Question
upstudy study bank question image url

Use synthetic division to find the quotient. \( \frac{2 x^{3}-5 x^{2}+6 x+8}{x+2} \) \( [?] x^{2}+x+\square+\overline{x+2} \)

Ask by Wheeler Schofield. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El cociente es \( 2x^{2} - 9x + 24 \) y el residuo es –40.

Solution

Vamos a dividir 2x³ – 5x² + 6x + 8 entre x + 2 usando la división sintética. Paso 1. Identificar la raíz del divisor: El divisor es x + 2, es decir, x = –2. Paso 2. Escribir los coeficientes del polinomio dividendo:   2  -5  6  8 Paso 3. Realizar la división sintética con –2:    __________________________ –2 |   2   –5   6   8           (–2·2 = –4)           __________________         2  (-5 + –4 = –9)           (–2·–9 = 18)           __________________         2  –9  (6 + 18 = 24)           (–2·24 = –48)           __________________         2  –9  24  (8 + –48 = –40) Los números de la parte inferior representan: – Los coeficientes del cociente: 2, –9 y 24, que corresponden a 2x² – 9x + 24. – El último número es el residuo: –40. Paso 4. Escribir el resultado de la división:   (2x³ – 5x² + 6x + 8) ÷ (x + 2) = 2x² – 9x + 24 – 40⁄(x + 2). Por tanto, el cociente es 2x² – 9x + 24 y el residuo es –40. Si tenemos que llenar la plantilla:   [2]x² + (–9)x + [24] con residuo (–40)/(x+2). Respuesta final en la notación pedida:   2x² – 9x + 24 + (–40)/(x+2).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To perform synthetic division of \(2x^3 - 5x^2 + 6x + 8\) by \(x + 2\), we will use \( -2 \) for synthetic division since we set the equation to zero with \(x = -2\). 1. Write down the coefficients: 2, -5, 6, 8. 2. Bring down the 2. 3. Multiply -2 by 2 to get -4 and add it to -5 to get -9. 4. Multiply -2 by -9 to get 18 and add it to 6 to get 24. 5. Finally, multiply -2 by 24 to get -48 and add it to 8 to get -40. The numbers we gathered in the process are: \(2\), \(-9\), \(24\). This means the quotient is \(2x^2 - 9x + 24\) with a remainder of \(-40\). So, \[ \frac{2x^{3}-5x^{2}+6x+8}{x+2} = 2x^{2} - 9x + 24 \quad \text{with remainder}\ -40. \] Thus, the answer is: \[ 2x^{2} - 9x + 24 + \frac{-40}{x + 2}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy