Question
upstudy study bank question image url

\( f ( x ) = \operatorname { Ln } \sqrt { \frac { 1 + \sin ( e ^ { x } ) } { \cos ( e ^ { x } ) } } + \frac { \sin ( e ^ { x } ) } { 2 \cos ^ { 2 } ( e ^ { x } ) } \)

Ask by Perkins Hart. in Venezuela
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La función se puede simplificar a: f(x) = (1/2) ln[(1 + sin(eˣ))⁄cos(eˣ)] + (1/2) tan(eˣ) sec(eˣ) Esto facilita la lectura y análisis de la función.

Solution

A continuación se muestra una forma de reescribir y analizar la función:   f(x) = Ln√((1 + sin(eˣ))⁄(cos(eˣ))) + [sin(eˣ)]⁄[2·cos²(eˣ)] 1. Primero, recordemos que la función logaritmo natural aplicada a una raíz se puede simplificar usando la propiedad   Ln(√A) = (1/2)·Ln(A). Por lo tanto, podemos escribir   f(x) = (1/2)·Ln[(1 + sin(eˣ))⁄(cos(eˣ))] + [sin(eˣ)]⁄[2·cos²(eˣ)]. 2. Observa que el segundo término se puede reexpresar en términos de las funciones tangente y secante. En efecto,   sin(eˣ)⁄cos²(eˣ) = [sin(eˣ)⁄cos(eˣ)] · [1⁄cos(eˣ)] = tan(eˣ) · sec(eˣ). Así, se tiene   f(x) = (1/2)·Ln[(1 + sin(eˣ))⁄(cos(eˣ))] + (1/2)·tan(eˣ)·sec(eˣ). 3. Esta expresión es equivalente a la original; en muchos casos se utiliza la forma anterior porque agrupar el factor 1/2 facilita la lectura y el análisis. 4. Adicionalmente, es importante notar que para que la función f(x) esté definida se deben cumplir dos condiciones derivadas de las expresiones involucradas:  a) El argumento del logaritmo debe ser positivo, es decir,   (1 + sin(eˣ))⁄(cos(eˣ)) > 0.  b) También debe cumplirse que cos(eˣ) ≠ 0, ya que aparece en el denominador. Resumen final:  La función puede escribirse de la forma   f(x) = (1/2)·Ln[(1 + sin(eˣ))⁄(cos(eˣ))] + (1/2)·tan(eˣ)·sec(eˣ), lo cual es una forma equivalente y a menudo más conveniente para ciertos análisis. Si necesitas realizar algún cálculo adicional (por ejemplo, derivar f(x) o analizar su dominio), no dudes en indicarlo.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Did you know that the natural logarithm function has deep connections with calculus, especially in integration and differentiation? The logarithm can transform multiplicative relationships into additive ones, making it super useful in various mathematical applications. In your function, the presence of the \( \ln \) function indicates that you're diving into a realm of mathematical identities and properties that have fascinating implications in both theoretical and applied contexts. When you're manipulating functions like the one you've shared, a common pitfall is overlooking the domain. For instance, when dealing with logarithmic functions, the argument inside must always be positive. So, it's crucial to check where the expression \( \frac{1 + \sin(e^x)}{\cos(e^x)} \) remains valid. This ensures that you're not running into undefined scenarios or complex numbers when you really want to stay in the realm of real numbers.

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy