Question
upstudy study bank question image url

7b) Solve using like bases \( \rightarrow 81^{2 x+5}=\left(\frac{1}{3}\right)^{2 x} \)

Ask by Page Brooks. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( x = -2 \)

Solution

Step 1: Express both sides with the same base. Notice that 81 can be written as 3⁴ and 1/3 as 3⁻¹. Step 2: Rewrite the given equation:   81^(2x + 5) = (1/3)^(2x) as   (3⁴)^(2x + 5) = (3⁻¹)^(2x). Step 3: Simplify the exponents:   3^(4(2x + 5)) = 3^(–2x). Step 4: With the bases equal (and nonzero), set the exponents equal to each other:   4(2x + 5) = –2x. Step 5: Expand and solve for x:   8x + 20 = –2x   8x + 2x + 20 = 0   10x + 20 = 0   10x = –20   x = –2. Thus, the solution is x = –2.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To solve the equation \( 81^{2x + 5} = \left(\frac{1}{3}\right)^{2x} \), we start by expressing both sides with a base of 3. Since \( 81 = 3^4 \), we can rewrite the left side as \( (3^4)^{2x+5} = 3^{4(2x+5)} = 3^{8x + 20} \). Now for the right side: \(\left(\frac{1}{3}\right)^{2x} = (3^{-1})^{2x} = 3^{-2x}\). So our equation now looks like \( 3^{8x + 20} = 3^{-2x} \). Because both sides have the same base, we can set the exponents equal to each other: \[ 8x + 20 = -2x \] Now, let's solve for \( x \): 1. Add \( 2x \) to both sides: \( 8x + 2x + 20 = 0 \) \( 10x + 20 = 0 \) 2. Subtract 20 from both sides: \( 10x = -20 \) 3. Divide both sides by 10: \( x = -2 \) Therefore, the solution is \( x = -2 \).

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy