Answer
e) \( 48\sqrt{3} - 96\sqrt{2} - 96 \)
f) \( -2 + \sqrt{10} \)
g) \( 3\sqrt{5} \)
Solution
Simplify the expression by following steps:
- step0: Multiply the numbers:
\(\left(2\sqrt{5}-3\sqrt{2}\right)\left(\sqrt{5}+2\sqrt{2}\right)\)
- step1: Apply the distributive property:
\(2\sqrt{5}\times \sqrt{5}+2\sqrt{5}\times 2\sqrt{2}-3\sqrt{2}\times \sqrt{5}-3\sqrt{2}\times 2\sqrt{2}\)
- step2: Multiply the numbers:
\(10+4\sqrt{10}-3\sqrt{10}-12\)
- step3: Subtract the numbers:
\(-2+\sqrt{10}\)
Expand the expression \( 8 \sqrt{6}(3 \sqrt{2}-4 \sqrt{3}-2 \sqrt{6}) \)
Simplify the expression by following steps:
- step0: Multiply the numbers:
\(8\sqrt{6}\times \left(3\sqrt{2}-4\sqrt{3}-2\sqrt{6}\right)\)
- step1: Multiply the terms:
\(\left(24\sqrt{2}-32\sqrt{3}-16\sqrt{6}\right)\sqrt{6}\)
- step2: Apply the distributive property:
\(24\sqrt{2}\times \sqrt{6}-32\sqrt{3}\times \sqrt{6}-16\sqrt{6}\times \sqrt{6}\)
- step3: Multiply the numbers:
\(48\sqrt{3}-32\sqrt{3}\times \sqrt{6}-16\sqrt{6}\times \sqrt{6}\)
- step4: Multiply the numbers:
\(48\sqrt{3}-96\sqrt{2}-16\sqrt{6}\times \sqrt{6}\)
- step5: Multiply the numbers:
\(48\sqrt{3}-96\sqrt{2}-96\)
Expand the expression \( \frac{1}{2} \sqrt{180}-\frac{6}{7} \sqrt{245}+\frac{2}{3} \sqrt{405} \)
Simplify the expression by following steps:
- step0: Simplify:
\(\frac{1}{2}\sqrt{180}-\frac{6}{7}\sqrt{245}+\frac{2}{3}\sqrt{405}\)
- step1: Simplify the root:
\(\frac{1}{2}\times 6\sqrt{5}-\frac{6}{7}\sqrt{245}+\frac{2}{3}\sqrt{405}\)
- step2: Simplify the root:
\(\frac{1}{2}\times 6\sqrt{5}-\frac{6}{7}\times 7\sqrt{5}+\frac{2}{3}\sqrt{405}\)
- step3: Simplify the root:
\(\frac{1}{2}\times 6\sqrt{5}-\frac{6}{7}\times 7\sqrt{5}+\frac{2}{3}\times 9\sqrt{5}\)
- step4: Multiply the numbers:
\(3\sqrt{5}-\frac{6}{7}\times 7\sqrt{5}+\frac{2}{3}\times 9\sqrt{5}\)
- step5: Reduce the numbers:
\(3\sqrt{5}-6\sqrt{5}+\frac{2}{3}\times 9\sqrt{5}\)
- step6: Multiply the numbers:
\(3\sqrt{5}-6\sqrt{5}+6\sqrt{5}\)
- step7: Collect like terms:
\(\left(3-6+6\right)\sqrt{5}\)
- step8: Calculate:
\(3\sqrt{5}\)
Let's break down the calculations for each expression step by step.
### e) \( 8 \sqrt{6}(3 \sqrt{2}-4 \sqrt{3}-2 \sqrt{6}) \)
1. Distribute \( 8 \sqrt{6} \) across each term inside the parentheses:
\[
8 \sqrt{6} \cdot 3 \sqrt{2} - 8 \sqrt{6} \cdot 4 \sqrt{3} - 8 \sqrt{6} \cdot 2 \sqrt{6}
\]
2. Calculate each term:
- \( 8 \sqrt{6} \cdot 3 \sqrt{2} = 24 \sqrt{12} = 24 \cdot 2 \sqrt{3} = 48 \sqrt{3} \)
- \( 8 \sqrt{6} \cdot 4 \sqrt{3} = 32 \sqrt{18} = 32 \cdot 3 \sqrt{2} = 96 \sqrt{2} \)
- \( 8 \sqrt{6} \cdot 2 \sqrt{6} = 16 \cdot 6 = 96 \)
3. Combine the results:
\[
48 \sqrt{3} - 96 \sqrt{2} - 96
\]
### f) \( (2 \sqrt{5}-3 \sqrt{2})(\sqrt{5}+2 \sqrt{2}) \)
1. Use the distributive property (FOIL method):
\[
2 \sqrt{5} \cdot \sqrt{5} + 2 \sqrt{5} \cdot 2 \sqrt{2} - 3 \sqrt{2} \cdot \sqrt{5} - 3 \sqrt{2} \cdot 2 \sqrt{2}
\]
2. Calculate each term:
- \( 2 \sqrt{5} \cdot \sqrt{5} = 2 \cdot 5 = 10 \)
- \( 2 \sqrt{5} \cdot 2 \sqrt{2} = 4 \sqrt{10} \)
- \( -3 \sqrt{2} \cdot \sqrt{5} = -3 \sqrt{10} \)
- \( -3 \sqrt{2} \cdot 2 \sqrt{2} = -6 \)
3. Combine the results:
\[
10 + 4 \sqrt{10} - 3 \sqrt{10} - 6 = 4 - 2 + \sqrt{10} = -2 + \sqrt{10}
\]
### g) \( \frac{1}{2} \sqrt{180}-\frac{6}{7} \sqrt{245}+\frac{2}{3} \sqrt{405} \)
1. Simplify each square root:
- \( \sqrt{180} = \sqrt{36 \cdot 5} = 6 \sqrt{5} \)
- \( \sqrt{245} = \sqrt{49 \cdot 5} = 7 \sqrt{5} \)
- \( \sqrt{405} = \sqrt{81 \cdot 5} = 9 \sqrt{5} \)
2. Substitute back into the expression:
\[
\frac{1}{2} \cdot 6 \sqrt{5} - \frac{6}{7} \cdot 7 \sqrt{5} + \frac{2}{3} \cdot 9 \sqrt{5}
\]
3. Calculate each term:
- \( \frac{1}{2} \cdot 6 \sqrt{5} = 3 \sqrt{5} \)
- \( -\frac{6}{7} \cdot 7 \sqrt{5} = -6 \sqrt{5} \)
- \( \frac{2}{3} \cdot 9 \sqrt{5} = 6 \sqrt{5} \)
4. Combine the results:
\[
3 \sqrt{5} - 6 \sqrt{5} + 6 \sqrt{5} = 3 \sqrt{5}
\]
### Final Results
- e) \( 48 \sqrt{3} - 96 \sqrt{2} - 96 \)
- f) \( -2 + \sqrt{10} \)
- g) \( 3 \sqrt{5} \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution