Question
upstudy study bank question image url

e) \( 8 \sqrt{6}(3 \sqrt{2}-4 \sqrt{3}-2 \sqrt{6}) \) f) \( (2 \sqrt{5}-3 \sqrt{2})(\sqrt{5}+2 \sqrt{2}) \) g) \( \frac{1}{2} \sqrt{180}-\frac{6}{7} \sqrt{245}+\frac{2}{3} \sqrt{405} \)

Ask by Martin Simmons. in Canada
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

e) \( 48\sqrt{3} - 96\sqrt{2} - 96 \) f) \( -2 + \sqrt{10} \) g) \( 3\sqrt{5} \)

Solution

Simplify the expression by following steps: - step0: Multiply the numbers: \(\left(2\sqrt{5}-3\sqrt{2}\right)\left(\sqrt{5}+2\sqrt{2}\right)\) - step1: Apply the distributive property: \(2\sqrt{5}\times \sqrt{5}+2\sqrt{5}\times 2\sqrt{2}-3\sqrt{2}\times \sqrt{5}-3\sqrt{2}\times 2\sqrt{2}\) - step2: Multiply the numbers: \(10+4\sqrt{10}-3\sqrt{10}-12\) - step3: Subtract the numbers: \(-2+\sqrt{10}\) Expand the expression \( 8 \sqrt{6}(3 \sqrt{2}-4 \sqrt{3}-2 \sqrt{6}) \) Simplify the expression by following steps: - step0: Multiply the numbers: \(8\sqrt{6}\times \left(3\sqrt{2}-4\sqrt{3}-2\sqrt{6}\right)\) - step1: Multiply the terms: \(\left(24\sqrt{2}-32\sqrt{3}-16\sqrt{6}\right)\sqrt{6}\) - step2: Apply the distributive property: \(24\sqrt{2}\times \sqrt{6}-32\sqrt{3}\times \sqrt{6}-16\sqrt{6}\times \sqrt{6}\) - step3: Multiply the numbers: \(48\sqrt{3}-32\sqrt{3}\times \sqrt{6}-16\sqrt{6}\times \sqrt{6}\) - step4: Multiply the numbers: \(48\sqrt{3}-96\sqrt{2}-16\sqrt{6}\times \sqrt{6}\) - step5: Multiply the numbers: \(48\sqrt{3}-96\sqrt{2}-96\) Expand the expression \( \frac{1}{2} \sqrt{180}-\frac{6}{7} \sqrt{245}+\frac{2}{3} \sqrt{405} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{1}{2}\sqrt{180}-\frac{6}{7}\sqrt{245}+\frac{2}{3}\sqrt{405}\) - step1: Simplify the root: \(\frac{1}{2}\times 6\sqrt{5}-\frac{6}{7}\sqrt{245}+\frac{2}{3}\sqrt{405}\) - step2: Simplify the root: \(\frac{1}{2}\times 6\sqrt{5}-\frac{6}{7}\times 7\sqrt{5}+\frac{2}{3}\sqrt{405}\) - step3: Simplify the root: \(\frac{1}{2}\times 6\sqrt{5}-\frac{6}{7}\times 7\sqrt{5}+\frac{2}{3}\times 9\sqrt{5}\) - step4: Multiply the numbers: \(3\sqrt{5}-\frac{6}{7}\times 7\sqrt{5}+\frac{2}{3}\times 9\sqrt{5}\) - step5: Reduce the numbers: \(3\sqrt{5}-6\sqrt{5}+\frac{2}{3}\times 9\sqrt{5}\) - step6: Multiply the numbers: \(3\sqrt{5}-6\sqrt{5}+6\sqrt{5}\) - step7: Collect like terms: \(\left(3-6+6\right)\sqrt{5}\) - step8: Calculate: \(3\sqrt{5}\) Let's break down the calculations for each expression step by step. ### e) \( 8 \sqrt{6}(3 \sqrt{2}-4 \sqrt{3}-2 \sqrt{6}) \) 1. Distribute \( 8 \sqrt{6} \) across each term inside the parentheses: \[ 8 \sqrt{6} \cdot 3 \sqrt{2} - 8 \sqrt{6} \cdot 4 \sqrt{3} - 8 \sqrt{6} \cdot 2 \sqrt{6} \] 2. Calculate each term: - \( 8 \sqrt{6} \cdot 3 \sqrt{2} = 24 \sqrt{12} = 24 \cdot 2 \sqrt{3} = 48 \sqrt{3} \) - \( 8 \sqrt{6} \cdot 4 \sqrt{3} = 32 \sqrt{18} = 32 \cdot 3 \sqrt{2} = 96 \sqrt{2} \) - \( 8 \sqrt{6} \cdot 2 \sqrt{6} = 16 \cdot 6 = 96 \) 3. Combine the results: \[ 48 \sqrt{3} - 96 \sqrt{2} - 96 \] ### f) \( (2 \sqrt{5}-3 \sqrt{2})(\sqrt{5}+2 \sqrt{2}) \) 1. Use the distributive property (FOIL method): \[ 2 \sqrt{5} \cdot \sqrt{5} + 2 \sqrt{5} \cdot 2 \sqrt{2} - 3 \sqrt{2} \cdot \sqrt{5} - 3 \sqrt{2} \cdot 2 \sqrt{2} \] 2. Calculate each term: - \( 2 \sqrt{5} \cdot \sqrt{5} = 2 \cdot 5 = 10 \) - \( 2 \sqrt{5} \cdot 2 \sqrt{2} = 4 \sqrt{10} \) - \( -3 \sqrt{2} \cdot \sqrt{5} = -3 \sqrt{10} \) - \( -3 \sqrt{2} \cdot 2 \sqrt{2} = -6 \) 3. Combine the results: \[ 10 + 4 \sqrt{10} - 3 \sqrt{10} - 6 = 4 - 2 + \sqrt{10} = -2 + \sqrt{10} \] ### g) \( \frac{1}{2} \sqrt{180}-\frac{6}{7} \sqrt{245}+\frac{2}{3} \sqrt{405} \) 1. Simplify each square root: - \( \sqrt{180} = \sqrt{36 \cdot 5} = 6 \sqrt{5} \) - \( \sqrt{245} = \sqrt{49 \cdot 5} = 7 \sqrt{5} \) - \( \sqrt{405} = \sqrt{81 \cdot 5} = 9 \sqrt{5} \) 2. Substitute back into the expression: \[ \frac{1}{2} \cdot 6 \sqrt{5} - \frac{6}{7} \cdot 7 \sqrt{5} + \frac{2}{3} \cdot 9 \sqrt{5} \] 3. Calculate each term: - \( \frac{1}{2} \cdot 6 \sqrt{5} = 3 \sqrt{5} \) - \( -\frac{6}{7} \cdot 7 \sqrt{5} = -6 \sqrt{5} \) - \( \frac{2}{3} \cdot 9 \sqrt{5} = 6 \sqrt{5} \) 4. Combine the results: \[ 3 \sqrt{5} - 6 \sqrt{5} + 6 \sqrt{5} = 3 \sqrt{5} \] ### Final Results - e) \( 48 \sqrt{3} - 96 \sqrt{2} - 96 \) - f) \( -2 + \sqrt{10} \) - g) \( 3 \sqrt{5} \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

First, let's simplify the expression \( 8 \sqrt{6}(3 \sqrt{2}-4 \sqrt{3}-2 \sqrt{6}) \). To do this, distribute \( 8 \sqrt{6} \) to each term inside the parentheses, leading to \( 24 \sqrt{12} - 32 \sqrt{18} - 16 \cdot 6 \). This gives us \( 24 \cdot 2 \sqrt{3} - 32 \cdot 3 \sqrt{2} - 96 \), which can be rewritten in simpler radical form for clearer understanding and better usability in future calculations. Next, turning to you with the expression \( (2 \sqrt{5}-3 \sqrt{2})(\sqrt{5}+2 \sqrt{2}) \), we can apply the distributive property (also known as FOIL for binomials). This leads us through \( 2 \sqrt{5} \cdot \sqrt{5} + 4 \sqrt{10} - 3 \sqrt{10} - 6 \), simplifying to \( 10 + \sqrt{10} - 6\). So, combining the constant terms, we arrive at \( 4 + \sqrt{10} \), simplifying our work into a manageable and meaningful result.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy