Question

Question 2 2. Simplify: 2.1. \( (2 y-3)\left(6 y^{2}+4 y-8\right) \) 2.2. \( \left(\frac{1}{p}-q\right)\left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\left(\frac{1}{p}+q p^{2}\right) \) 2.3. \( \frac{x^{3}-27}{x^{2}+3 x+9} \) 2.4. \( \frac{(3 x)^{2}(-2 x y)^{3}}{2 x^{5} y^{4}} \) 2.5. \( \left(\frac{a}{2}+1\right)\left(\frac{a}{2}-1\right) \) 2.6. \( (a-2)\left(a^{2}+2 a+4\right) \) 2.7. \( \frac{3 x^{3}-7 x^{2}-6 x}{x^{2}-9} \div \frac{3 x^{2}+2 x}{3 x+9} \)

Ask by Campos Potter. in South Africa
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified results for each part: 1. \( (2 y-3)(6 y^{2}+4 y-8) = 12y^{3}-10y^{2}-28y+24 \) 2. \( \left(\frac{1}{p}-q\right)\left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\left(\frac{1}{p}+q p^{2}\right) = \frac{p-2q^{2}p^{3}-q}{p^{3}} \) 3. \( \frac{x^{3}-27}{x^{2}+3 x+9} = x-3 \) 4. \( \frac{(3 x)^{2}(-2 x y)^{3}}{2 x^{5} y^{4}} = -\frac{36}{y} \) 5. \( \left(\frac{a}{2}+1\right)\left(\frac{a}{2}-1\right) = \frac{a^{2}-4}{4} \) 6. \( (a-2)(a^{2}+2 a+4) = a^{3}-8 \) 7. \( \frac{3 x^{3}-7 x^{2}-6 x}{x^{2}-9} \div \frac{3 x^{2}+2 x}{3 x+9} = 3 \)

Solution

Simplify the expression by following steps: - step0: Multiply the terms: \(\left(2y-3\right)\left(6y^{2}+4y-8\right)\) - step1: Apply the distributive property: \(2y\times 6y^{2}+2y\times 4y-2y\times 8-3\times 6y^{2}-3\times 4y-\left(-3\times 8\right)\) - step2: Multiply the terms: \(12y^{3}+8y^{2}-16y-18y^{2}-12y-\left(-24\right)\) - step3: Remove the parentheses: \(12y^{3}+8y^{2}-16y-18y^{2}-12y+24\) - step4: Subtract the terms: \(12y^{3}-10y^{2}-28y+24\) Expand the expression \( \frac{3 x^{3}-7 x^{2}-6 x}{x^{2}-9} \div \frac{3 x^{2}+2 x}{3 x+9} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{3x^{3}-7x^{2}-6x}{x^{2}-9}\div \frac{3x^{2}+2x}{3x+9}\) - step1: Divide the terms: \(\frac{3x^{2}+2x}{x+3}\div \frac{3x^{2}+2x}{3x+9}\) - step2: Multiply by the reciprocal: \(\frac{3x^{2}+2x}{x+3}\times \frac{3x+9}{3x^{2}+2x}\) - step3: Reduce the fraction: \(\frac{1}{x+3}\times \left(3x+9\right)\) - step4: Rewrite the expression: \(\frac{1}{x+3}\times 3\left(x+3\right)\) - step5: Reduce the fraction: \(1\times 3\) - step6: Multiply the terms: \(3\) Expand the expression \( \frac{x^{3}-27}{x^{2}+3 x+9} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{x^{3}-27}{x^{2}+3x+9}\) - step1: Calculate: \(\frac{\left(x-3\right)\left(x^{2}+3x+9\right)}{x^{2}+3x+9}\) - step2: Reduce the fraction: \(x-3\) Expand the expression \( \left(\frac{a}{2}+1\right)\left(\frac{a}{2}-1\right) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(\frac{a}{2}+1\right)\left(\frac{a}{2}-1\right)\) - step1: Add the terms: \(\frac{a+2}{2}\times \left(\frac{a}{2}-1\right)\) - step2: Subtract the terms: \(\frac{a+2}{2}\times \frac{a-2}{2}\) - step3: Multiply the terms: \(\frac{\left(a+2\right)\left(a-2\right)}{2\times 2}\) - step4: Multiply the terms: \(\frac{\left(a+2\right)\left(a-2\right)}{4}\) - step5: Multiply the terms: \(\frac{a^{2}-4}{4}\) Expand the expression \( \frac{(3 x)^{2}(-2 x y)^{3}}{2 x^{5} y^{4}} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{\left(3x\right)^{2}\left(-2xy\right)^{3}}{2x^{5}y^{4}}\) - step1: Multiply the terms: \(\frac{-72x^{5}y^{3}}{2x^{5}y^{4}}\) - step2: Reduce the fraction: \(\frac{-72y^{3}}{2y^{4}}\) - step3: Reduce the fraction: \(\frac{-72}{2y^{4-3}}\) - step4: Reduce the fraction: \(\frac{-72}{2y}\) - step5: Divide the terms: \(\frac{-36}{y}\) - step6: Rewrite the fraction: \(-\frac{36}{y}\) Expand the expression \( (a-2)(a^{2}+2 a+4) \) Simplify the expression by following steps: - step0: Simplify the product: \(\left(a-2\right)\left(a^{2}+2a+4\right)\) - step1: Simplify the product: \(a^{3}-8\) Expand the expression \( \left(\frac{1}{p}-q\right)\left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\left(\frac{1}{p}+q p^{2}\right) \) Simplify the expression by following steps: - step0: Simplify: \(\left(\frac{1}{p}-q\right)\left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\times \left(\frac{1}{p}+qp^{2}\right)\) - step1: Subtract the terms: \(\frac{1-qp}{p}\times \left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\times \left(\frac{1}{p}+qp^{2}\right)\) - step2: Add the terms: \(\frac{1-qp}{p}\times \frac{1+qp}{p}-\frac{q}{p^{2}}\times \left(\frac{1}{p}+qp^{2}\right)\) - step3: Add the terms: \(\frac{1-qp}{p}\times \frac{1+qp}{p}-\frac{q}{p^{2}}\times \frac{1+qp^{3}}{p}\) - step4: Multiply the terms: \(\frac{\left(1-qp\right)\left(1+qp\right)}{p^{2}}-\frac{q}{p^{2}}\times \frac{1+qp^{3}}{p}\) - step5: Multiply the terms: \(\frac{\left(1-qp\right)\left(1+qp\right)}{p^{2}}-\frac{q\left(1+qp^{3}\right)}{p^{3}}\) - step6: Reduce fractions to a common denominator: \(\frac{\left(1-qp\right)\left(1+qp\right)p}{p^{2}\times p}-\frac{q\left(1+qp^{3}\right)}{p^{3}}\) - step7: Multiply: \(\frac{\left(1-qp\right)\left(1+qp\right)p}{p^{3}}-\frac{q\left(1+qp^{3}\right)}{p^{3}}\) - step8: Transform the expression: \(\frac{\left(1-qp\right)\left(1+qp\right)p-q\left(1+qp^{3}\right)}{p^{3}}\) - step9: Multiply the terms: \(\frac{p-q^{2}p^{3}-q\left(1+qp^{3}\right)}{p^{3}}\) - step10: Multiply the terms: \(\frac{p-q^{2}p^{3}-\left(q+q^{2}p^{3}\right)}{p^{3}}\) - step11: Subtract the terms: \(\frac{p-2q^{2}p^{3}-q}{p^{3}}\) Here are the simplified results for each part of the question: ### 2.1 Simplifying \( (2 y-3)(6 y^{2}+4 y-8) \): \[ 12y^{3}-10y^{2}-28y+24 \] ### 2.2 Simplifying \( \left(\frac{1}{p}-q\right)\left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\left(\frac{1}{p}+q p^{2}\right) \): \[ \frac{p-2q^{2}p^{3}-q}{p^{3}} \] ### 2.3 Simplifying \( \frac{x^{3}-27}{x^{2}+3 x+9} \): \[ x-3 \] ### 2.4 Simplifying \( \frac{(3 x)^{2}(-2 x y)^{3}}{2 x^{5} y^{4}} \): \[ -\frac{36}{y} \] ### 2.5 Simplifying \( \left(\frac{a}{2}+1\right)\left(\frac{a}{2}-1\right) \): \[ \frac{a^{2}-4}{4} \] ### 2.6 Simplifying \( (a-2)(a^{2}+2 a+4) \): \[ a^{3}-8 \] ### 2.7 Simplifying \( \frac{3 x^{3}-7 x^{2}-6 x}{x^{2}-9} \div \frac{3 x^{2}+2 x}{3 x+9} \): \[ 3 \] If you have any further questions or need additional assistance, feel free to ask!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Sure! Here’s some additional engaging knowledge relevant to simplifying expressions that you might find interesting: Did you know that polynomial expressions have been studied since ancient civilizations? The Babylonians had their own ways of solving equations around 2000 BC, showcasing their prowess with algebraic ideas long before the term "polynomial" even existed. Mathematics has truly evolved, borrowing from countless cultures to reach the detailed forms we know today! In real-world applications, simplifying expressions helps engineers and scientists make quick calculations. For example, when designing a bridge, engineers simplify complex formulas that relate force and material strength to ensure safety while reducing computational errors. Quick simplifications can make the difference between a strong structure and a flimsy design, emphasizing the importance of those initial mathematical steps!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy