Responder
Here are the simplified results for each part:
1. \( (2 y-3)(6 y^{2}+4 y-8) = 12y^{3}-10y^{2}-28y+24 \)
2. \( \left(\frac{1}{p}-q\right)\left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\left(\frac{1}{p}+q p^{2}\right) = \frac{p-2q^{2}p^{3}-q}{p^{3}} \)
3. \( \frac{x^{3}-27}{x^{2}+3 x+9} = x-3 \)
4. \( \frac{(3 x)^{2}(-2 x y)^{3}}{2 x^{5} y^{4}} = -\frac{36}{y} \)
5. \( \left(\frac{a}{2}+1\right)\left(\frac{a}{2}-1\right) = \frac{a^{2}-4}{4} \)
6. \( (a-2)(a^{2}+2 a+4) = a^{3}-8 \)
7. \( \frac{3 x^{3}-7 x^{2}-6 x}{x^{2}-9} \div \frac{3 x^{2}+2 x}{3 x+9} = 3 \)
Solución
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(2y-3\right)\left(6y^{2}+4y-8\right)\)
- step1: Apply the distributive property:
\(2y\times 6y^{2}+2y\times 4y-2y\times 8-3\times 6y^{2}-3\times 4y-\left(-3\times 8\right)\)
- step2: Multiply the terms:
\(12y^{3}+8y^{2}-16y-18y^{2}-12y-\left(-24\right)\)
- step3: Remove the parentheses:
\(12y^{3}+8y^{2}-16y-18y^{2}-12y+24\)
- step4: Subtract the terms:
\(12y^{3}-10y^{2}-28y+24\)
Expand the expression \( \frac{3 x^{3}-7 x^{2}-6 x}{x^{2}-9} \div \frac{3 x^{2}+2 x}{3 x+9} \)
Simplify the expression by following steps:
- step0: Simplify:
\(\frac{3x^{3}-7x^{2}-6x}{x^{2}-9}\div \frac{3x^{2}+2x}{3x+9}\)
- step1: Divide the terms:
\(\frac{3x^{2}+2x}{x+3}\div \frac{3x^{2}+2x}{3x+9}\)
- step2: Multiply by the reciprocal:
\(\frac{3x^{2}+2x}{x+3}\times \frac{3x+9}{3x^{2}+2x}\)
- step3: Reduce the fraction:
\(\frac{1}{x+3}\times \left(3x+9\right)\)
- step4: Rewrite the expression:
\(\frac{1}{x+3}\times 3\left(x+3\right)\)
- step5: Reduce the fraction:
\(1\times 3\)
- step6: Multiply the terms:
\(3\)
Expand the expression \( \frac{x^{3}-27}{x^{2}+3 x+9} \)
Simplify the expression by following steps:
- step0: Simplify:
\(\frac{x^{3}-27}{x^{2}+3x+9}\)
- step1: Calculate:
\(\frac{\left(x-3\right)\left(x^{2}+3x+9\right)}{x^{2}+3x+9}\)
- step2: Reduce the fraction:
\(x-3\)
Expand the expression \( \left(\frac{a}{2}+1\right)\left(\frac{a}{2}-1\right) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(\frac{a}{2}+1\right)\left(\frac{a}{2}-1\right)\)
- step1: Add the terms:
\(\frac{a+2}{2}\times \left(\frac{a}{2}-1\right)\)
- step2: Subtract the terms:
\(\frac{a+2}{2}\times \frac{a-2}{2}\)
- step3: Multiply the terms:
\(\frac{\left(a+2\right)\left(a-2\right)}{2\times 2}\)
- step4: Multiply the terms:
\(\frac{\left(a+2\right)\left(a-2\right)}{4}\)
- step5: Multiply the terms:
\(\frac{a^{2}-4}{4}\)
Expand the expression \( \frac{(3 x)^{2}(-2 x y)^{3}}{2 x^{5} y^{4}} \)
Simplify the expression by following steps:
- step0: Simplify:
\(\frac{\left(3x\right)^{2}\left(-2xy\right)^{3}}{2x^{5}y^{4}}\)
- step1: Multiply the terms:
\(\frac{-72x^{5}y^{3}}{2x^{5}y^{4}}\)
- step2: Reduce the fraction:
\(\frac{-72y^{3}}{2y^{4}}\)
- step3: Reduce the fraction:
\(\frac{-72}{2y^{4-3}}\)
- step4: Reduce the fraction:
\(\frac{-72}{2y}\)
- step5: Divide the terms:
\(\frac{-36}{y}\)
- step6: Rewrite the fraction:
\(-\frac{36}{y}\)
Expand the expression \( (a-2)(a^{2}+2 a+4) \)
Simplify the expression by following steps:
- step0: Simplify the product:
\(\left(a-2\right)\left(a^{2}+2a+4\right)\)
- step1: Simplify the product:
\(a^{3}-8\)
Expand the expression \( \left(\frac{1}{p}-q\right)\left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\left(\frac{1}{p}+q p^{2}\right) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(\frac{1}{p}-q\right)\left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\times \left(\frac{1}{p}+qp^{2}\right)\)
- step1: Subtract the terms:
\(\frac{1-qp}{p}\times \left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\times \left(\frac{1}{p}+qp^{2}\right)\)
- step2: Add the terms:
\(\frac{1-qp}{p}\times \frac{1+qp}{p}-\frac{q}{p^{2}}\times \left(\frac{1}{p}+qp^{2}\right)\)
- step3: Add the terms:
\(\frac{1-qp}{p}\times \frac{1+qp}{p}-\frac{q}{p^{2}}\times \frac{1+qp^{3}}{p}\)
- step4: Multiply the terms:
\(\frac{\left(1-qp\right)\left(1+qp\right)}{p^{2}}-\frac{q}{p^{2}}\times \frac{1+qp^{3}}{p}\)
- step5: Multiply the terms:
\(\frac{\left(1-qp\right)\left(1+qp\right)}{p^{2}}-\frac{q\left(1+qp^{3}\right)}{p^{3}}\)
- step6: Reduce fractions to a common denominator:
\(\frac{\left(1-qp\right)\left(1+qp\right)p}{p^{2}\times p}-\frac{q\left(1+qp^{3}\right)}{p^{3}}\)
- step7: Multiply:
\(\frac{\left(1-qp\right)\left(1+qp\right)p}{p^{3}}-\frac{q\left(1+qp^{3}\right)}{p^{3}}\)
- step8: Transform the expression:
\(\frac{\left(1-qp\right)\left(1+qp\right)p-q\left(1+qp^{3}\right)}{p^{3}}\)
- step9: Multiply the terms:
\(\frac{p-q^{2}p^{3}-q\left(1+qp^{3}\right)}{p^{3}}\)
- step10: Multiply the terms:
\(\frac{p-q^{2}p^{3}-\left(q+q^{2}p^{3}\right)}{p^{3}}\)
- step11: Subtract the terms:
\(\frac{p-2q^{2}p^{3}-q}{p^{3}}\)
Here are the simplified results for each part of the question:
### 2.1
Simplifying \( (2 y-3)(6 y^{2}+4 y-8) \):
\[
12y^{3}-10y^{2}-28y+24
\]
### 2.2
Simplifying \( \left(\frac{1}{p}-q\right)\left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\left(\frac{1}{p}+q p^{2}\right) \):
\[
\frac{p-2q^{2}p^{3}-q}{p^{3}}
\]
### 2.3
Simplifying \( \frac{x^{3}-27}{x^{2}+3 x+9} \):
\[
x-3
\]
### 2.4
Simplifying \( \frac{(3 x)^{2}(-2 x y)^{3}}{2 x^{5} y^{4}} \):
\[
-\frac{36}{y}
\]
### 2.5
Simplifying \( \left(\frac{a}{2}+1\right)\left(\frac{a}{2}-1\right) \):
\[
\frac{a^{2}-4}{4}
\]
### 2.6
Simplifying \( (a-2)(a^{2}+2 a+4) \):
\[
a^{3}-8
\]
### 2.7
Simplifying \( \frac{3 x^{3}-7 x^{2}-6 x}{x^{2}-9} \div \frac{3 x^{2}+2 x}{3 x+9} \):
\[
3
\]
If you have any further questions or need additional assistance, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución