Pregunta

Question 2 2. Simplify: 2.1. \( (2 y-3)\left(6 y^{2}+4 y-8\right) \) 2.2. \( \left(\frac{1}{p}-q\right)\left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\left(\frac{1}{p}+q p^{2}\right) \) 2.3. \( \frac{x^{3}-27}{x^{2}+3 x+9} \) 2.4. \( \frac{(3 x)^{2}(-2 x y)^{3}}{2 x^{5} y^{4}} \) 2.5. \( \left(\frac{a}{2}+1\right)\left(\frac{a}{2}-1\right) \) 2.6. \( (a-2)\left(a^{2}+2 a+4\right) \) 2.7. \( \frac{3 x^{3}-7 x^{2}-6 x}{x^{2}-9} \div \frac{3 x^{2}+2 x}{3 x+9} \)

Ask by Campos Potter. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the simplified results for each part: 1. \( (2 y-3)(6 y^{2}+4 y-8) = 12y^{3}-10y^{2}-28y+24 \) 2. \( \left(\frac{1}{p}-q\right)\left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\left(\frac{1}{p}+q p^{2}\right) = \frac{p-2q^{2}p^{3}-q}{p^{3}} \) 3. \( \frac{x^{3}-27}{x^{2}+3 x+9} = x-3 \) 4. \( \frac{(3 x)^{2}(-2 x y)^{3}}{2 x^{5} y^{4}} = -\frac{36}{y} \) 5. \( \left(\frac{a}{2}+1\right)\left(\frac{a}{2}-1\right) = \frac{a^{2}-4}{4} \) 6. \( (a-2)(a^{2}+2 a+4) = a^{3}-8 \) 7. \( \frac{3 x^{3}-7 x^{2}-6 x}{x^{2}-9} \div \frac{3 x^{2}+2 x}{3 x+9} = 3 \)

Solución

Simplify the expression by following steps: - step0: Multiply the terms: \(\left(2y-3\right)\left(6y^{2}+4y-8\right)\) - step1: Apply the distributive property: \(2y\times 6y^{2}+2y\times 4y-2y\times 8-3\times 6y^{2}-3\times 4y-\left(-3\times 8\right)\) - step2: Multiply the terms: \(12y^{3}+8y^{2}-16y-18y^{2}-12y-\left(-24\right)\) - step3: Remove the parentheses: \(12y^{3}+8y^{2}-16y-18y^{2}-12y+24\) - step4: Subtract the terms: \(12y^{3}-10y^{2}-28y+24\) Expand the expression \( \frac{3 x^{3}-7 x^{2}-6 x}{x^{2}-9} \div \frac{3 x^{2}+2 x}{3 x+9} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{3x^{3}-7x^{2}-6x}{x^{2}-9}\div \frac{3x^{2}+2x}{3x+9}\) - step1: Divide the terms: \(\frac{3x^{2}+2x}{x+3}\div \frac{3x^{2}+2x}{3x+9}\) - step2: Multiply by the reciprocal: \(\frac{3x^{2}+2x}{x+3}\times \frac{3x+9}{3x^{2}+2x}\) - step3: Reduce the fraction: \(\frac{1}{x+3}\times \left(3x+9\right)\) - step4: Rewrite the expression: \(\frac{1}{x+3}\times 3\left(x+3\right)\) - step5: Reduce the fraction: \(1\times 3\) - step6: Multiply the terms: \(3\) Expand the expression \( \frac{x^{3}-27}{x^{2}+3 x+9} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{x^{3}-27}{x^{2}+3x+9}\) - step1: Calculate: \(\frac{\left(x-3\right)\left(x^{2}+3x+9\right)}{x^{2}+3x+9}\) - step2: Reduce the fraction: \(x-3\) Expand the expression \( \left(\frac{a}{2}+1\right)\left(\frac{a}{2}-1\right) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(\frac{a}{2}+1\right)\left(\frac{a}{2}-1\right)\) - step1: Add the terms: \(\frac{a+2}{2}\times \left(\frac{a}{2}-1\right)\) - step2: Subtract the terms: \(\frac{a+2}{2}\times \frac{a-2}{2}\) - step3: Multiply the terms: \(\frac{\left(a+2\right)\left(a-2\right)}{2\times 2}\) - step4: Multiply the terms: \(\frac{\left(a+2\right)\left(a-2\right)}{4}\) - step5: Multiply the terms: \(\frac{a^{2}-4}{4}\) Expand the expression \( \frac{(3 x)^{2}(-2 x y)^{3}}{2 x^{5} y^{4}} \) Simplify the expression by following steps: - step0: Simplify: \(\frac{\left(3x\right)^{2}\left(-2xy\right)^{3}}{2x^{5}y^{4}}\) - step1: Multiply the terms: \(\frac{-72x^{5}y^{3}}{2x^{5}y^{4}}\) - step2: Reduce the fraction: \(\frac{-72y^{3}}{2y^{4}}\) - step3: Reduce the fraction: \(\frac{-72}{2y^{4-3}}\) - step4: Reduce the fraction: \(\frac{-72}{2y}\) - step5: Divide the terms: \(\frac{-36}{y}\) - step6: Rewrite the fraction: \(-\frac{36}{y}\) Expand the expression \( (a-2)(a^{2}+2 a+4) \) Simplify the expression by following steps: - step0: Simplify the product: \(\left(a-2\right)\left(a^{2}+2a+4\right)\) - step1: Simplify the product: \(a^{3}-8\) Expand the expression \( \left(\frac{1}{p}-q\right)\left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\left(\frac{1}{p}+q p^{2}\right) \) Simplify the expression by following steps: - step0: Simplify: \(\left(\frac{1}{p}-q\right)\left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\times \left(\frac{1}{p}+qp^{2}\right)\) - step1: Subtract the terms: \(\frac{1-qp}{p}\times \left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\times \left(\frac{1}{p}+qp^{2}\right)\) - step2: Add the terms: \(\frac{1-qp}{p}\times \frac{1+qp}{p}-\frac{q}{p^{2}}\times \left(\frac{1}{p}+qp^{2}\right)\) - step3: Add the terms: \(\frac{1-qp}{p}\times \frac{1+qp}{p}-\frac{q}{p^{2}}\times \frac{1+qp^{3}}{p}\) - step4: Multiply the terms: \(\frac{\left(1-qp\right)\left(1+qp\right)}{p^{2}}-\frac{q}{p^{2}}\times \frac{1+qp^{3}}{p}\) - step5: Multiply the terms: \(\frac{\left(1-qp\right)\left(1+qp\right)}{p^{2}}-\frac{q\left(1+qp^{3}\right)}{p^{3}}\) - step6: Reduce fractions to a common denominator: \(\frac{\left(1-qp\right)\left(1+qp\right)p}{p^{2}\times p}-\frac{q\left(1+qp^{3}\right)}{p^{3}}\) - step7: Multiply: \(\frac{\left(1-qp\right)\left(1+qp\right)p}{p^{3}}-\frac{q\left(1+qp^{3}\right)}{p^{3}}\) - step8: Transform the expression: \(\frac{\left(1-qp\right)\left(1+qp\right)p-q\left(1+qp^{3}\right)}{p^{3}}\) - step9: Multiply the terms: \(\frac{p-q^{2}p^{3}-q\left(1+qp^{3}\right)}{p^{3}}\) - step10: Multiply the terms: \(\frac{p-q^{2}p^{3}-\left(q+q^{2}p^{3}\right)}{p^{3}}\) - step11: Subtract the terms: \(\frac{p-2q^{2}p^{3}-q}{p^{3}}\) Here are the simplified results for each part of the question: ### 2.1 Simplifying \( (2 y-3)(6 y^{2}+4 y-8) \): \[ 12y^{3}-10y^{2}-28y+24 \] ### 2.2 Simplifying \( \left(\frac{1}{p}-q\right)\left(\frac{1}{p}+q\right)-\frac{q}{p^{2}}\left(\frac{1}{p}+q p^{2}\right) \): \[ \frac{p-2q^{2}p^{3}-q}{p^{3}} \] ### 2.3 Simplifying \( \frac{x^{3}-27}{x^{2}+3 x+9} \): \[ x-3 \] ### 2.4 Simplifying \( \frac{(3 x)^{2}(-2 x y)^{3}}{2 x^{5} y^{4}} \): \[ -\frac{36}{y} \] ### 2.5 Simplifying \( \left(\frac{a}{2}+1\right)\left(\frac{a}{2}-1\right) \): \[ \frac{a^{2}-4}{4} \] ### 2.6 Simplifying \( (a-2)(a^{2}+2 a+4) \): \[ a^{3}-8 \] ### 2.7 Simplifying \( \frac{3 x^{3}-7 x^{2}-6 x}{x^{2}-9} \div \frac{3 x^{2}+2 x}{3 x+9} \): \[ 3 \] If you have any further questions or need additional assistance, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Sure! Here’s some additional engaging knowledge relevant to simplifying expressions that you might find interesting: Did you know that polynomial expressions have been studied since ancient civilizations? The Babylonians had their own ways of solving equations around 2000 BC, showcasing their prowess with algebraic ideas long before the term "polynomial" even existed. Mathematics has truly evolved, borrowing from countless cultures to reach the detailed forms we know today! In real-world applications, simplifying expressions helps engineers and scientists make quick calculations. For example, when designing a bridge, engineers simplify complex formulas that relate force and material strength to ensure safety while reducing computational errors. Quick simplifications can make the difference between a strong structure and a flimsy design, emphasizing the importance of those initial mathematical steps!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad