Find (a) \( f(g(x)) \), (b) \( g(f(x)) \), and (c) \( f(f(x)) \). \( f(x)=-x+11, g(x)=\sqrt[3]{x-3} \) a. \( f(g(x))=\square \) b. \( g(f(x))=\square \) c. \( f(f(x))=\square \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Mind Expander
To find the composed functions, let's start with \( f(x) \) and \( g(x) \). Given: - \( f(x) = -x + 11 \) - \( g(x) = \sqrt[3]{x - 3} \) Now, calculating each one: (a) \( f(g(x)) \): First, substitute \( g(x) \) into \( f(x) \): \[ f(g(x)) = f\left(\sqrt[3]{x - 3}\right) = -\left(\sqrt[3]{x - 3}\right) + 11 \] So, \[ f(g(x)) = -\sqrt[3]{x - 3} + 11 \] (b) \( g(f(x)) \): Now, substitute \( f(x) \) into \( g(x) \): \[ g(f(x)) = g(-x + 11) = \sqrt[3]{(-x + 11) - 3} = \sqrt[3]{-x + 8} \] Thus, \[ g(f(x)) = \sqrt[3]{-x + 8} \] (c) \( f(f(x)) \): Substitute \( f(x) \) into itself: \[ f(f(x)) = f(-x + 11) = -(-x + 11) + 11 = x - 11 + 11 = x \] Therefore, \[ f(f(x)) = x \] Summarizing the results: a. \( f(g(x)) = -\sqrt[3]{x - 3} + 11 \) b. \( g(f(x)) = \sqrt[3]{-x + 8} \) c. \( f(f(x)) = x \)