Question
upstudy study bank question image url

Imagine que usted es un ingeniero que está diseñando un sistema de drénaje para una pequeña área verde en un parque. Este parque tiene una pendiente suave y quieres calcular la cantidad de agua que se puede recolectar en una canaleta que se extiende a lo largo de la base de la pendiente. La forma de la canaleta se modela como un arco que se eleva sobre el suelo. La altura de la canaleta en función de su posición x (donde x mide la distancia horizontal desde un punto fijo en la canaleta) está dada por la función: \[ \mathrm{H}(\mathrm{x})=2 x e^{x} \] ¿Cual es la integral de la función? a. \( \quad \int 2 x e^{x} d x=x e^{x}-2 e^{x}+C \) b. \[ \int 2 x e^{x} d x=2 x e^{x}-2 e^{x}+C \] c. \( \int 2 x e^{x} d x=x e^{x}+2 e^{x}+C \) d. \( \int 2 x e^{x} d x=2 e^{x}+2 e^{x}+C \)

Ask by Cervantes Vega. in Colombia
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La integral de \( 2x e^{x} \) es \( 2x e^{x} - 2e^{x} + C \).

Solution

Para resolver la integral, aplicamos integración por partes. Sea:   u = 2x   ⇒ du = 2 dx   dv = eˣ dx  ⇒ v = eˣ La fórmula de integración por partes es:   ∫ u dv = u·v − ∫ v du Reemplazamos:   ∫ 2x eˣ dx = (2x)eˣ − ∫ eˣ (2 dx) = 2x eˣ − 2∫ eˣ dx Sabemos que ∫ eˣ dx = eˣ, entonces:   ∫ 2x eˣ dx = 2x eˣ − 2eˣ + C Esta es la respuesta correcta, que corresponde a la opción b.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Para calcular la integral de la función \( H(x) = 2x e^{x} \), podemos usar la integración por partes. Escogemos \( u = 2x \) y \( dv = e^{x}dx \). Después de aplicar la fórmula de integración por partes, llegamos a la conclusión que la integral es: \[ \int 2x e^{x} dx = 2xe^{x} - 2e^{x} + C \] Entonces, la opción correcta es la \( b \): \[ \int 2 x e^{x} d x=2 x e^{x}-2 e^{x}+C \] Los ingenieros a menudo subestiman la importancia de las integrales en el diseño de sistemas. Sin embargo, al calcular el volume de agua que puede ser recolectado en un sistema de drenaje, las integrales no son solo un ejercicio académico, sino una herramienta crucial para asegurar que los diseños sean tanto eficientes como efectivos. Así que, ¡no te olvides de integrar! Integrar no es solo una habilidad matemática, sino una magia que ocurre cuando logramos encontrar áreas bajo curvas. Si quieres profundizar más en este maravilloso mundo de la integración, podrías leer libros como "Calculus Made Easy" de Silvanus P. Thompson o explorar contenido en línea en plataformas como Khan Academy, donde la integración y sus aplicaciones se presentan de manera interactiva y divertida. ¡No te limites y suma un poco de integración a tu vida!

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy