Question
q.) \( -x^{2} \times(-3 x)^{2}-3 x^{2} \times \frac{x^{2}}{-x} \)
Ask by Potter Franklin. in South Africa
Feb 21,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
The simplified expression is \( -9x^{4}+3x^{3} \).
Solution
Calculate or simplify the expression \( -x^{2} \times(-3 x)^{2}-3 x^{2} \times \frac{x^{2}}{-x} \).
Simplify the expression by following steps:
- step0: Solution:
\(-x^{2}\left(-3x\right)^{2}-3x^{2}\times \frac{x^{2}}{-x}\)
- step1: Divide the terms:
\(-x^{2}\left(-3x\right)^{2}-3x^{2}\left(-x\right)\)
- step2: Multiply the terms:
\(-9x^{4}-3x^{2}\left(-x\right)\)
- step3: Multiply:
\(-9x^{4}+3x^{3}\)
The simplified expression is \( -9x^{4}+3x^{3} \).
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


The Deep Dive
Let's simplify the expression step by step! First, consider \(-x^{2} \times (-3x)^{2}\). The \((-3x)^{2}\) becomes \(9x^{2}\). So, we have: \[ -x^{2} \times 9x^{2} = -9x^{4} \] Next, for \(-3x^{2} \times \frac{x^{2}}{-x}\), notice that \(\frac{x^{2}}{-x} = -x\). Thus, it becomes: \[ -3x^{2} \times -x = 3x^{3} \] Putting it all together, our expression is: \[ -9x^{4} + 3x^{3} \] So the final simplified expression is: \[ -9x^{4} + 3x^{3} \]