Question
is an isosceles triangle with
and
. It is given that the perimeter of
is 384 cm. Find the radius of the circumscribed circle of
.
Ask by Reid Hammond. in Hong Kong
Mar 30,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
等腰三角形
的底邊
,兩腰
。利用畢氏定理計算高
,面積
。根據外接圓半徑公式
,計算得
。
Solution
-
由題意得知
為等腰三角形,且 ,邊長分別為 三角形的周長為384 cm,因此:解得: -
選取邊
為底邊,設底邊中點為 ,則: 設從頂點做到底邊 的垂線,垂足為 ,故可利用畢氏定理求出高度 : 整理得:因此: -
利用底邊與高度計算面積
: -
利用三角形的邊長與面積求外接圓半徑
: 其中三邊分別為:代入得:先計算分子:分母:因此: -
化簡計算:故外接圓半徑為:
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Mind Expander
To find the radius of the circumscribed circle of triangle
, we first need to determine the lengths of the sides of the triangle using the given perimeter.
Given:
-
- Perimeter of
The perimeter consists of all three sides:
Since it’s an isosceles triangle with
, we can let
. Thus,
This simplifies to:
Subtracting 144 from both sides:
Dividing by 2:
Now we know the lengths of the sides:
Next, to find the radius
of the circumscribed circle, we can use the formula:
where
,
, and
are the lengths of the sides, and
is the area of the triangle. Let’s assign:
-
(side AC) -
(side BC) -
(side AB)
First, we calculate the semi-perimeter
:
Now we calculate the area
using Heron’s formula:
Calculating
,
, and
:
So now substituting back into Heron’s formula gives:
Calculating
:
Calculating inside the square root:
So,
Now substituting into the formula for
:
Calculating
:
Therefore, the radius of the circumscribed circle of
is approximately
.