Answer
Here are the results for the three proofs:
1. **First Proof:**
\[
\frac{1-\cos^{2} \theta}{\cos^{2} \theta+2 \cos \theta+1} = \frac{1-\cos \theta}{1+\cos \theta}
\]
- **True**
2. **Second Proof:**
\[
\frac{1+\sin x}{1-\sin x}-\frac{1-\sin x}{1+\sin x} = \frac{4 \tan x}{\cos x}
\]
- **True**
3. **Third Proof:**
\[
\frac{1+2 \sin \theta \cdot \cos \theta}{\sin \theta+\cos \theta} = \sin \theta+\cos \theta
\]
- **False**
If you need more details or additional proofs, let me know!
Solution
Verify the identity by following steps:
- step0: Verify:
\(\frac{1-\cos^{2}\left(\theta \right)}{\cos^{2}\left(\theta \right)+2\cos\left(\theta \right)+1}=\frac{1-\cos\left(\theta \right)}{1+\cos\left(\theta \right)}\)
- step1: Choose a side to work on:
\(\frac{1}{\cos\left(\theta \right)+1}-\frac{\cos\left(\theta \right)}{\cos\left(\theta \right)+1}=\frac{1-\cos\left(\theta \right)}{1+\cos\left(\theta \right)}\)
- step2: Choose the other side to work on:
\(\frac{1}{\cos\left(\theta \right)+1}-\frac{\cos\left(\theta \right)}{\cos\left(\theta \right)+1}=\frac{1}{1+\cos\left(\theta \right)}-\frac{\cos\left(\theta \right)}{1+\cos\left(\theta \right)}\)
- step3: Calculate:
\(\frac{1}{1+\cos\left(\theta \right)}-\frac{\cos\left(\theta \right)}{1+\cos\left(\theta \right)}=\frac{1}{1+\cos\left(\theta \right)}-\frac{\cos\left(\theta \right)}{1+\cos\left(\theta \right)}\)
- step4: Verify the identity:
\(\textrm{true}\)
Determine whether the expression \( \frac{1+2 \sin \theta \cdot \cos \theta}{\sin \theta+\cos \theta}=\sin \theta+\cos \theta \) is always true.
Verify the identity by following steps:
- step0: Verify:
\(\frac{1+2\sin\left(\theta \right)\cos\left(\theta \right)}{\sin\left(\theta \right)+\cos\left(\theta \right)}=\sin\left(\theta \right)+\cos\left(\theta \right)\)
- step1: Choose a side to work on:
\(\frac{1}{\sin\left(\theta \right)+\cos\left(\theta \right)}+\frac{\sin\left(2\theta \right)}{\sin\left(\theta \right)+\cos\left(\theta \right)}=\sin\left(\theta \right)+\cos\left(\theta \right)\)
- step2: Verify the identity:
\(\textrm{false}\)
Determine whether the expression \( \frac{1+\sin x}{1-\sin x}-\frac{1-\sin x}{1+\sin x}=\frac{4 \tan x}{\cos x} \) is always true.
Verify the identity by following steps:
- step0: Verify:
\(\frac{1+\sin\left(x\right)}{1-\sin\left(x\right)}-\frac{1-\sin\left(x\right)}{1+\sin\left(x\right)}=\frac{4\tan\left(x\right)}{\cos\left(x\right)}\)
- step1: Choose a side to work on:
\(\frac{4\sin\left(x\right)}{\cos^{2}\left(x\right)}=\frac{4\tan\left(x\right)}{\cos\left(x\right)}\)
- step2: Choose the other side to work on:
\(\frac{4\sin\left(x\right)}{\cos^{2}\left(x\right)}=\frac{4\sin\left(x\right)}{\cos^{2}\left(x\right)}\)
- step3: Verify the identity:
\(\textrm{true}\)
Here are the results for the three proofs:
1. **First Proof:**
\[
\frac{1-\cos^{2} \theta}{\cos^{2} \theta+2 \cos \theta+1} = \frac{1-\cos \theta}{1+\cos \theta}
\]
- This statement is **true**.
2. **Second Proof:**
\[
\frac{1+\sin x}{1-\sin x}-\frac{1-\sin x}{1+\sin x} = \frac{4 \tan x}{\cos x}
\]
- This statement is **true**.
3. **Third Proof:**
\[
\frac{1+2 \sin \theta \cdot \cos \theta}{\sin \theta+\cos \theta} = \sin \theta+\cos \theta
\]
- This statement is **false**.
If you need further clarification or additional proofs, feel free to ask!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution