Question
upstudy study bank question image url

8. Prove that: \( \frac{1-\cos ^{2} \theta}{\cos ^{2} \theta+2 \cos \theta+1}=\frac{1-\cos \theta}{1+\cos \theta} \) 10. Prove that: \( \frac{1+\sin x}{1-\sin x}-\frac{1-\sin x}{1+\sin x}=\frac{4 \tan x}{\cos x} \) 11. Prove that: \( \frac{1+2 \sin \theta \cdot \cos \theta}{\sin \theta+\cos \theta}=\sin \theta+\cos \theta \) (consider number 6 )

Ask by Ruiz Tucker. in South Africa
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the results for the three proofs: 1. **First Proof:** \[ \frac{1-\cos^{2} \theta}{\cos^{2} \theta+2 \cos \theta+1} = \frac{1-\cos \theta}{1+\cos \theta} \] - **True** 2. **Second Proof:** \[ \frac{1+\sin x}{1-\sin x}-\frac{1-\sin x}{1+\sin x} = \frac{4 \tan x}{\cos x} \] - **True** 3. **Third Proof:** \[ \frac{1+2 \sin \theta \cdot \cos \theta}{\sin \theta+\cos \theta} = \sin \theta+\cos \theta \] - **False** If you need more details or additional proofs, let me know!

Solution

Verify the identity by following steps: - step0: Verify: \(\frac{1-\cos^{2}\left(\theta \right)}{\cos^{2}\left(\theta \right)+2\cos\left(\theta \right)+1}=\frac{1-\cos\left(\theta \right)}{1+\cos\left(\theta \right)}\) - step1: Choose a side to work on: \(\frac{1}{\cos\left(\theta \right)+1}-\frac{\cos\left(\theta \right)}{\cos\left(\theta \right)+1}=\frac{1-\cos\left(\theta \right)}{1+\cos\left(\theta \right)}\) - step2: Choose the other side to work on: \(\frac{1}{\cos\left(\theta \right)+1}-\frac{\cos\left(\theta \right)}{\cos\left(\theta \right)+1}=\frac{1}{1+\cos\left(\theta \right)}-\frac{\cos\left(\theta \right)}{1+\cos\left(\theta \right)}\) - step3: Calculate: \(\frac{1}{1+\cos\left(\theta \right)}-\frac{\cos\left(\theta \right)}{1+\cos\left(\theta \right)}=\frac{1}{1+\cos\left(\theta \right)}-\frac{\cos\left(\theta \right)}{1+\cos\left(\theta \right)}\) - step4: Verify the identity: \(\textrm{true}\) Determine whether the expression \( \frac{1+2 \sin \theta \cdot \cos \theta}{\sin \theta+\cos \theta}=\sin \theta+\cos \theta \) is always true. Verify the identity by following steps: - step0: Verify: \(\frac{1+2\sin\left(\theta \right)\cos\left(\theta \right)}{\sin\left(\theta \right)+\cos\left(\theta \right)}=\sin\left(\theta \right)+\cos\left(\theta \right)\) - step1: Choose a side to work on: \(\frac{1}{\sin\left(\theta \right)+\cos\left(\theta \right)}+\frac{\sin\left(2\theta \right)}{\sin\left(\theta \right)+\cos\left(\theta \right)}=\sin\left(\theta \right)+\cos\left(\theta \right)\) - step2: Verify the identity: \(\textrm{false}\) Determine whether the expression \( \frac{1+\sin x}{1-\sin x}-\frac{1-\sin x}{1+\sin x}=\frac{4 \tan x}{\cos x} \) is always true. Verify the identity by following steps: - step0: Verify: \(\frac{1+\sin\left(x\right)}{1-\sin\left(x\right)}-\frac{1-\sin\left(x\right)}{1+\sin\left(x\right)}=\frac{4\tan\left(x\right)}{\cos\left(x\right)}\) - step1: Choose a side to work on: \(\frac{4\sin\left(x\right)}{\cos^{2}\left(x\right)}=\frac{4\tan\left(x\right)}{\cos\left(x\right)}\) - step2: Choose the other side to work on: \(\frac{4\sin\left(x\right)}{\cos^{2}\left(x\right)}=\frac{4\sin\left(x\right)}{\cos^{2}\left(x\right)}\) - step3: Verify the identity: \(\textrm{true}\) Here are the results for the three proofs: 1. **First Proof:** \[ \frac{1-\cos^{2} \theta}{\cos^{2} \theta+2 \cos \theta+1} = \frac{1-\cos \theta}{1+\cos \theta} \] - This statement is **true**. 2. **Second Proof:** \[ \frac{1+\sin x}{1-\sin x}-\frac{1-\sin x}{1+\sin x} = \frac{4 \tan x}{\cos x} \] - This statement is **true**. 3. **Third Proof:** \[ \frac{1+2 \sin \theta \cdot \cos \theta}{\sin \theta+\cos \theta} = \sin \theta+\cos \theta \] - This statement is **false**. If you need further clarification or additional proofs, feel free to ask!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To tackle these trigonometric equations, being well-versed in identity transformations is key! For instance, utilizing the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \) can simplify expressions substantially. Remember that sometimes, rewriting components can make your life easier—factorizing or combining fractions might reveal hidden simplifications! It’s also essential to keep an eye out for common mistakes, like overlooking critical conditions when working with identities—make sure to consider cases where values might lead to undefined expressions. For example, division by zero can derail your proofs quickly, so always check the domain of your variables!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy