Pregunta
upstudy study bank question image url

8. Prove that: \( \frac{1-\cos ^{2} \theta}{\cos ^{2} \theta+2 \cos \theta+1}=\frac{1-\cos \theta}{1+\cos \theta} \) 10. Prove that: \( \frac{1+\sin x}{1-\sin x}-\frac{1-\sin x}{1+\sin x}=\frac{4 \tan x}{\cos x} \) 11. Prove that: \( \frac{1+2 \sin \theta \cdot \cos \theta}{\sin \theta+\cos \theta}=\sin \theta+\cos \theta \) (consider number 6 )

Ask by Ruiz Tucker. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the results for the three proofs: 1. **First Proof:** \[ \frac{1-\cos^{2} \theta}{\cos^{2} \theta+2 \cos \theta+1} = \frac{1-\cos \theta}{1+\cos \theta} \] - **True** 2. **Second Proof:** \[ \frac{1+\sin x}{1-\sin x}-\frac{1-\sin x}{1+\sin x} = \frac{4 \tan x}{\cos x} \] - **True** 3. **Third Proof:** \[ \frac{1+2 \sin \theta \cdot \cos \theta}{\sin \theta+\cos \theta} = \sin \theta+\cos \theta \] - **False** If you need more details or additional proofs, let me know!

Solución

Verify the identity by following steps: - step0: Verify: \(\frac{1-\cos^{2}\left(\theta \right)}{\cos^{2}\left(\theta \right)+2\cos\left(\theta \right)+1}=\frac{1-\cos\left(\theta \right)}{1+\cos\left(\theta \right)}\) - step1: Choose a side to work on: \(\frac{1}{\cos\left(\theta \right)+1}-\frac{\cos\left(\theta \right)}{\cos\left(\theta \right)+1}=\frac{1-\cos\left(\theta \right)}{1+\cos\left(\theta \right)}\) - step2: Choose the other side to work on: \(\frac{1}{\cos\left(\theta \right)+1}-\frac{\cos\left(\theta \right)}{\cos\left(\theta \right)+1}=\frac{1}{1+\cos\left(\theta \right)}-\frac{\cos\left(\theta \right)}{1+\cos\left(\theta \right)}\) - step3: Calculate: \(\frac{1}{1+\cos\left(\theta \right)}-\frac{\cos\left(\theta \right)}{1+\cos\left(\theta \right)}=\frac{1}{1+\cos\left(\theta \right)}-\frac{\cos\left(\theta \right)}{1+\cos\left(\theta \right)}\) - step4: Verify the identity: \(\textrm{true}\) Determine whether the expression \( \frac{1+2 \sin \theta \cdot \cos \theta}{\sin \theta+\cos \theta}=\sin \theta+\cos \theta \) is always true. Verify the identity by following steps: - step0: Verify: \(\frac{1+2\sin\left(\theta \right)\cos\left(\theta \right)}{\sin\left(\theta \right)+\cos\left(\theta \right)}=\sin\left(\theta \right)+\cos\left(\theta \right)\) - step1: Choose a side to work on: \(\frac{1}{\sin\left(\theta \right)+\cos\left(\theta \right)}+\frac{\sin\left(2\theta \right)}{\sin\left(\theta \right)+\cos\left(\theta \right)}=\sin\left(\theta \right)+\cos\left(\theta \right)\) - step2: Verify the identity: \(\textrm{false}\) Determine whether the expression \( \frac{1+\sin x}{1-\sin x}-\frac{1-\sin x}{1+\sin x}=\frac{4 \tan x}{\cos x} \) is always true. Verify the identity by following steps: - step0: Verify: \(\frac{1+\sin\left(x\right)}{1-\sin\left(x\right)}-\frac{1-\sin\left(x\right)}{1+\sin\left(x\right)}=\frac{4\tan\left(x\right)}{\cos\left(x\right)}\) - step1: Choose a side to work on: \(\frac{4\sin\left(x\right)}{\cos^{2}\left(x\right)}=\frac{4\tan\left(x\right)}{\cos\left(x\right)}\) - step2: Choose the other side to work on: \(\frac{4\sin\left(x\right)}{\cos^{2}\left(x\right)}=\frac{4\sin\left(x\right)}{\cos^{2}\left(x\right)}\) - step3: Verify the identity: \(\textrm{true}\) Here are the results for the three proofs: 1. **First Proof:** \[ \frac{1-\cos^{2} \theta}{\cos^{2} \theta+2 \cos \theta+1} = \frac{1-\cos \theta}{1+\cos \theta} \] - This statement is **true**. 2. **Second Proof:** \[ \frac{1+\sin x}{1-\sin x}-\frac{1-\sin x}{1+\sin x} = \frac{4 \tan x}{\cos x} \] - This statement is **true**. 3. **Third Proof:** \[ \frac{1+2 \sin \theta \cdot \cos \theta}{\sin \theta+\cos \theta} = \sin \theta+\cos \theta \] - This statement is **false**. If you need further clarification or additional proofs, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To tackle these trigonometric equations, being well-versed in identity transformations is key! For instance, utilizing the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \) can simplify expressions substantially. Remember that sometimes, rewriting components can make your life easier—factorizing or combining fractions might reveal hidden simplifications! It’s also essential to keep an eye out for common mistakes, like overlooking critical conditions when working with identities—make sure to consider cases where values might lead to undefined expressions. For example, division by zero can derail your proofs quickly, so always check the domain of your variables!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad