Question
upstudy study bank question image url

Click and drag the steps in the correct order to show that \( \neg p \rightarrow(q \rightarrow \eta) \) and \( q \rightarrow(p \vee \eta) \) are logically equivalent. (Note: While proving. prove the equivalence from \( \neg p \rightarrow(q \rightarrow \eta) \) to \( q \rightarrow(p \vee \eta)) \)

Ask by Gibson Clarke. in Canada
Jan 30,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

To show that \( \neg p \rightarrow (q \rightarrow \eta) \) is equivalent to \( q \rightarrow (p \vee \eta) \), follow these steps: 1. Start with \( \neg p \rightarrow (q \rightarrow \eta) \). 2. Rewrite \( q \rightarrow \eta \) as \( \neg q \vee \eta \). 3. Substitute back to get \( \neg p \rightarrow (\neg q \vee \eta) \), which simplifies to \( p \vee (\neg q \vee \eta) \). 4. Apply associativity to get \( \neg q \vee (p \vee \eta) \). 5. Recognize this as \( q \rightarrow (p \vee \eta) \). Thus, \( \neg p \rightarrow (q \rightarrow \eta) \equiv q \rightarrow (p \vee \eta) \).

Solution

Certainly! Let's walk through the logical equivalence step-by-step to show that \( \neg p \rightarrow (q \rightarrow \eta) \) is equivalent to \( q \rightarrow (p \vee \eta) \). ### Step-by-Step Proof 1. **Start with the Original Statement:** \[ \neg p \rightarrow (q \rightarrow \eta) \] 2. **Rewrite Implications Using \( A \rightarrow B \equiv \neg A \vee B \):** - First, rewrite \( q \rightarrow \eta \): \[ q \rightarrow \eta \equiv \neg q \vee \eta \] - Then, substitute back into the original statement: \[ \neg p \rightarrow (\neg q \vee \eta) \equiv \neg (\neg p) \vee (\neg q \vee \eta) \] - Simplify \( \neg (\neg p) \) to \( p \): \[ p \vee (\neg q \vee \eta) \] 3. **Apply Associativity of Disjunction (\( \vee \)):** \[ p \vee \neg q \vee \eta \] - This can be regrouped as: \[ \neg q \vee (p \vee \eta) \] 4. **Recognize the Implication Form:** - Notice that \( \neg q \vee (p \vee \eta) \) is equivalent to: \[ q \rightarrow (p \vee \eta) \] - This follows because \( A \rightarrow B \equiv \neg A \vee B \). 5. **Final Equivalence:** \[ \neg p \rightarrow (q \rightarrow \eta) \equiv q \rightarrow (p \vee \eta) \] ### Summary of the Steps in Order 1. **Original Statement:** \[ \neg p \rightarrow (q \rightarrow \eta) \] 2. **Rewrite Implications:** \[ \neg p \rightarrow (\neg q \vee \eta) \equiv p \vee (\neg q \vee \eta) \] 3. **Apply Associativity:** \[ p \vee \neg q \vee \eta \equiv \neg q \vee (p \vee \eta) \] 4. **Recognize Implication Form:** \[ \neg q \vee (p \vee \eta) \equiv q \rightarrow (p \vee \eta) \] 5. **Conclude Equivalence:** \[ \neg p \rightarrow (q \rightarrow \eta) \equiv q \rightarrow (p \vee \eta) \] By following these steps, we've successfully demonstrated that \( \neg p \rightarrow (q \rightarrow \eta) \) is logically equivalent to \( q \rightarrow (p \vee \eta) \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To demonstrate that \( \neg p \rightarrow (q \rightarrow \eta) \) and \( q \rightarrow (p \vee \eta) \) are logically equivalent, we can use a series of logical steps. Let’s organize those steps in order: 1. **Start with the first expression:** Assume \( \neg p \rightarrow (q \rightarrow \eta) \). 2. **Rewrite implications using logical equivalences:** The implication can be rewritten as \( \neg \neg p \vee (q \rightarrow \eta) \), which simplifies to \( p \vee (q \rightarrow \eta) \). 3. **Further break down the remaining implication:** The term \( q \rightarrow \eta \) can be rewritten as \( \neg q \vee \eta \). Hence now we have \( p \vee (\neg q \vee \eta) \). 4. **Apply Associative Law of disjunction:** Reorganize the disjunctions: \( (p \vee \neg q) \vee \eta \). 5. **Now express this in terms of the second expression:** Notice that \( q \rightarrow (p \vee \eta) \) is equivalent to \( \neg q \vee (p \vee \eta) \). 6. **Thus, the disjunctions are equivalent:** Since \( (p \vee \neg q) \vee \eta \) can assert \( \neg q \) leads to \( p \vee \eta \), this means we've shown \( \neg p \rightarrow (q \rightarrow \eta) \) leads to \( q \rightarrow (p \vee \eta) \). Therefore, the expression \( \neg p \rightarrow (q \rightarrow \eta) \) is logically equivalent to \( q \rightarrow (p \vee \eta) \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy