Question
upstudy study bank question image url

(9) \( x^{3}-8 \) (8) \( 2 x^{3}+x-6 x-3 \) (9) \( x^{2}+3 x \) D) \( x^{2}+3 x-10 \) (e) \( 3 a t+b b-3 a+2 b \)

Ask by Henry Newton. in South Africa
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified forms of the expressions: 1. \( x^{3}-8 = (x-2)(x^{2}+2x+4) \) 2. \( 2x^{3}-5x-3 \) (cannot be factored further) 3. \( x^{2}+3x = x(x+3) \) 4. \( x^{2}+3x-10 = (x+5)(x-2) \) 5. \( 3at + b^2 - 3a + 2b = 3a(t - 1) + b(b + 2) \)

Solution

It seems you have provided a list of algebraic expressions. I will simplify each expression step by step. 1. **Expression (9)**: \( x^{3}-8 \) - This is a difference of cubes, which can be factored using the formula \( a^3 - b^3 = (a - b)(a^2 + ab + b^2) \). - Here, \( a = x \) and \( b = 2 \). - Thus, we can factor it as: \[ x^{3}-8 = (x-2)(x^{2}+2x+4) \] 2. **Expression (8)**: \( 2x^{3}+x-6x-3 \) - First, combine like terms: \[ 2x^{3} + (x - 6x) - 3 = 2x^{3} - 5x - 3 \] - This expression does not factor nicely, so we will leave it as is. 3. **Expression (9)**: \( x^{2}+3x \) - Factor out the common term \( x \): \[ x^{2}+3x = x(x+3) \] 4. **Expression D**: \( x^{2}+3x-10 \) - We will factor this quadratic expression. We need two numbers that multiply to \(-10\) and add to \(3\). The numbers \(5\) and \(-2\) work. - Thus, we can factor it as: \[ x^{2}+3x-10 = (x+5)(x-2) \] 5. **Expression (e)**: \( 3at + bb - 3a + 2b \) - First, rewrite \( bb \) as \( b^2 \): \[ 3at + b^2 - 3a + 2b \] - Now, we can group the terms: \[ 3at - 3a + b^2 + 2b = 3a(t - 1) + b^2 + 2b \] - The quadratic \( b^2 + 2b \) can be factored as: \[ b^2 + 2b = b(b + 2) \] - Therefore, the entire expression can be written as: \[ 3a(t - 1) + b(b + 2) \] Now, let's summarize the simplified forms of each expression: 1. \( x^{3}-8 = (x-2)(x^{2}+2x+4) \) 2. \( 2x^{3}-5x-3 \) (not factored) 3. \( x^{2}+3x = x(x+3) \) 4. \( x^{2}+3x-10 = (x+5)(x-2) \) 5. \( 3at + b^2 - 3a + 2b = 3a(t - 1) + b(b + 2) \) If you need further assistance or specific calculations, please let me know!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Did you know that the expression \( x^3 - 8 \) can be factored using the difference of cubes formula? Specifically, it can be rewritten as \( (x - 2)(x^2 + 2x + 4) \), transforming a seemingly complex expression into a more manageable one. It's a nifty trick that can simplify calculations, especially when dealing with polynomial equations! When tackling polynomials like \( 2x^3 + x - 6x - 3 \), a common mistake is to forget to combine like terms early on. First, combine \( x - 6x \) to simplify it to \( -5x \), giving you \( 2x^3 - 5x - 3 \). This sets a clearer path for factoring or applying the Rational Root Theorem. Always keep an eye out for those sneaky like terms!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy