Responder
Here are the simplified forms of the expressions:
1. \( x^{3}-8 = (x-2)(x^{2}+2x+4) \)
2. \( 2x^{3}-5x-3 \) (cannot be factored further)
3. \( x^{2}+3x = x(x+3) \)
4. \( x^{2}+3x-10 = (x+5)(x-2) \)
5. \( 3at + b^2 - 3a + 2b = 3a(t - 1) + b(b + 2) \)
Solución
It seems you have provided a list of algebraic expressions. I will simplify each expression step by step.
1. **Expression (9)**: \( x^{3}-8 \)
- This is a difference of cubes, which can be factored using the formula \( a^3 - b^3 = (a - b)(a^2 + ab + b^2) \).
- Here, \( a = x \) and \( b = 2 \).
- Thus, we can factor it as:
\[
x^{3}-8 = (x-2)(x^{2}+2x+4)
\]
2. **Expression (8)**: \( 2x^{3}+x-6x-3 \)
- First, combine like terms:
\[
2x^{3} + (x - 6x) - 3 = 2x^{3} - 5x - 3
\]
- This expression does not factor nicely, so we will leave it as is.
3. **Expression (9)**: \( x^{2}+3x \)
- Factor out the common term \( x \):
\[
x^{2}+3x = x(x+3)
\]
4. **Expression D**: \( x^{2}+3x-10 \)
- We will factor this quadratic expression. We need two numbers that multiply to \(-10\) and add to \(3\). The numbers \(5\) and \(-2\) work.
- Thus, we can factor it as:
\[
x^{2}+3x-10 = (x+5)(x-2)
\]
5. **Expression (e)**: \( 3at + bb - 3a + 2b \)
- First, rewrite \( bb \) as \( b^2 \):
\[
3at + b^2 - 3a + 2b
\]
- Now, we can group the terms:
\[
3at - 3a + b^2 + 2b = 3a(t - 1) + b^2 + 2b
\]
- The quadratic \( b^2 + 2b \) can be factored as:
\[
b^2 + 2b = b(b + 2)
\]
- Therefore, the entire expression can be written as:
\[
3a(t - 1) + b(b + 2)
\]
Now, let's summarize the simplified forms of each expression:
1. \( x^{3}-8 = (x-2)(x^{2}+2x+4) \)
2. \( 2x^{3}-5x-3 \) (not factored)
3. \( x^{2}+3x = x(x+3) \)
4. \( x^{2}+3x-10 = (x+5)(x-2) \)
5. \( 3at + b^2 - 3a + 2b = 3a(t - 1) + b(b + 2) \)
If you need further assistance or specific calculations, please let me know!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución