Question
upstudy study bank question image url

Activity 2 Simplify the following WITHOUT the use of a calculator: \( 2.1 \frac{\tan \left(180^{\circ}+x\right) \cdot \cos \left(360^{\circ}-x\right)}{\sin (180-x) \cdot \cos \left(90^{\circ}+x\right)+\cos \left(540^{\circ}+x\right) \cdot \cos (-x)} \) \( 2.3 \sin \left(90^{\circ}-x\right) \cdot \cos \left(180^{\circ}-x\right)+\tan x \cdot \cos (-x) \cdot \sin \left(180^{\circ}+x\right) \) \( 2.4 \frac{\sin ^{2} \theta}{\sin \left(180^{\circ}-\theta\right) \cdot \cos \left(90^{\circ}+\theta\right)+\tan 45^{\circ}} \) \( 2.5 \frac{\sin 104^{\circ}\left(2 \cos ^{2} 15^{\circ}\right.}{\tan 38^{\circ} \cdot \sin ^{2} 412^{\circ}} \) \( 2.6 \frac{\sin \left(90^{\circ}+\theta\right)+\cos \left(180^{\circ}+\theta\right) \sin (-\theta)}{\sin 180^{\circ}-\tan 100^{\circ}} \)

Ask by Griffiths Gibson. in South Africa
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified expressions: 1. **2.1:** \(\frac{\sin(x)}{-\sin^2(x) + \cos^2(x)}\) 2. **2.3:** \(-1\) 3. **2.4:** \(\frac{\sin^2 \theta}{-\sin^2 \theta + 1}\) 4. **2.5:** \(\frac{\sin(104^{\circ}) \cdot (2 \cos^2(15^{\circ}))}{\tan(38^{\circ}) \cdot \sin^2(52^{\circ})}\) 5. **2.6:** \(\frac{\cos(\theta) - \cos(\theta) \sin(\theta)}{-\tan(100^{\circ})}\)

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{2.6\left(\sin\left(90+\theta \right)+\cos\left(180+\theta \right)\sin\left(-\theta \right)\right)}{\left(\sin\left(180\right)-\tan\left(100\right)\right)}\) - step1: Remove the parentheses: \(\frac{2.6\left(\sin\left(90+\theta \right)+\cos\left(180+\theta \right)\sin\left(-\theta \right)\right)}{\sin\left(180\right)-\tan\left(100\right)}\) - step2: Rewrite the expression: \(\frac{2.6\left(\sin\left(90+\theta \right)+\cos\left(\theta +180\right)\sin\left(-\theta \right)\right)}{\sin\left(180\right)-\tan\left(100\right)}\) - step3: Transform the expression: \(\frac{2.6\left(\sin\left(90+\theta \right)+\cos\left(\theta +180\right)\left(-\sin\left(\theta \right)\right)\right)}{\sin\left(180\right)-\tan\left(100\right)}\) - step4: Rewrite the expression: \(\frac{2.6\left(\sin\left(\theta +90\right)+\cos\left(\theta +180\right)\left(-\sin\left(\theta \right)\right)\right)}{\sin\left(180\right)-\tan\left(100\right)}\) - step5: Rewrite the expression: \(\frac{2.6\left(\sin\left(\theta +90\right)-\cos\left(\theta +180\right)\sin\left(\theta \right)\right)}{\sin\left(180\right)-\tan\left(100\right)}\) - step6: Multiply the terms: \(\frac{2.6\sin\left(\theta +90\right)-2.6\cos\left(\theta +180\right)\sin\left(\theta \right)}{\sin\left(180\right)-\tan\left(100\right)}\) - step7: Convert the expressions: \(\frac{\frac{13}{5}\sin\left(\theta +90\right)-\frac{13}{5}\cos\left(\theta +180\right)\sin\left(\theta \right)}{\sin\left(180\right)-\tan\left(100\right)}\) - step8: Simplify the expression: \(\frac{13\sin\left(\theta +90\right)-13\cos\left(\theta +180\right)\sin\left(\theta \right)}{5\sin\left(180\right)-5\tan\left(100\right)}\) - step9: Rewrite the expression: \(\left(13\sin\left(\theta +90\right)-13\cos\left(\theta +180\right)\sin\left(\theta \right)\right)\left(5\sin\left(180\right)-5\tan\left(100\right)\right)^{-1}\) - step10: Calculate: \(\left(13\sin\left(\theta +90\right)-13\cos\left(\theta +180\right)\sin\left(\theta \right)\right)\times \frac{1}{5\sin\left(180\right)-5\tan\left(100\right)}\) - step11: Calculate: \(\frac{13}{5\sin\left(180\right)-5\tan\left(100\right)}\times \sin\left(\theta +90\right)+\frac{13}{5\tan\left(100\right)-5\sin\left(180\right)}\times \cos\left(\theta +180\right)\sin\left(\theta \right)\) - step12: Rewrite the expression: \(\frac{13}{5\sin\left(180\right)-5\tan\left(100\right)}\times \sin\left(\theta +90\right)+\frac{13}{-5\sin\left(180\right)+5\tan\left(100\right)}\times \sin\left(\theta \right)\cos\left(\theta +180\right)\) - step13: Simplify: \(\frac{13\sin\left(\theta +90\right)-13\sin\left(\theta \right)\cos\left(\theta +180\right)}{5\sin\left(180\right)-5\tan\left(100\right)}\) Calculate or simplify the expression \( 2.5 * (\sin(104) * (2 * \cos^2(15))) / (\tan(38) * \sin^2(412)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{2.5\left(\sin\left(104\right)\left(2\cos^{2}\left(15\right)\right)\right)}{\left(\tan\left(38\right)\sin^{2}\left(412\right)\right)}\) - step1: Remove the parentheses: \(\frac{2.5\sin\left(104\right)\times 2\cos^{2}\left(15\right)}{\tan\left(38\right)\sin^{2}\left(412\right)}\) - step2: Multiply the terms: \(\frac{5\sin\left(104\right)\cos^{2}\left(15\right)}{\tan\left(38\right)\sin^{2}\left(412\right)}\) - step3: Calculate the trigonometric value: \(-15.719411\) Let's simplify each expression step by step without using a calculator. ### 2.1 \[ \frac{\tan(180^{\circ}+x) \cdot \cos(360^{\circ}-x)}{\sin(180-x) \cdot \cos(90^{\circ}+x) + \cos(540^{\circ}+x) \cdot \cos(-x)} \] **Step 1: Simplify the trigonometric functions.** - \(\tan(180^{\circ}+x) = \tan(x)\) - \(\cos(360^{\circ}-x) = \cos(x)\) - \(\sin(180-x) = \sin(x)\) - \(\cos(90^{\circ}+x) = -\sin(x)\) - \(\cos(540^{\circ}+x) = \cos(x)\) - \(\cos(-x) = \cos(x)\) **Step 2: Substitute these values into the expression.** \[ \frac{\tan(x) \cdot \cos(x)}{\sin(x) \cdot (-\sin(x)) + \cos(x) \cdot \cos(x)} \] This simplifies to: \[ \frac{\tan(x) \cdot \cos(x)}{-\sin^2(x) + \cos^2(x)} \] **Step 3: Use the identity \(\tan(x) = \frac{\sin(x)}{\cos(x)}\)** \[ \frac{\frac{\sin(x)}{\cos(x)} \cdot \cos(x)}{-\sin^2(x) + \cos^2(x)} = \frac{\sin(x)}{-\sin^2(x) + \cos^2(x)} \] ### 2.3 \[ \sin(90^{\circ}-x) \cdot \cos(180^{\circ}-x) + \tan(x) \cdot \cos(-x) \cdot \sin(180^{\circ}+x) \] **Step 1: Simplify the trigonometric functions.** - \(\sin(90^{\circ}-x) = \cos(x)\) - \(\cos(180^{\circ}-x) = -\cos(x)\) - \(\tan(x) = \frac{\sin(x)}{\cos(x)}\) - \(\cos(-x) = \cos(x)\) - \(\sin(180^{\circ}+x) = -\sin(x)\) **Step 2: Substitute these values into the expression.** \[ \cos(x) \cdot (-\cos(x)) + \frac{\sin(x)}{\cos(x)} \cdot \cos(x) \cdot (-\sin(x)) \] This simplifies to: \[ -\cos^2(x) - \sin^2(x) = -1 \] ### 2.4 \[ \frac{\sin^2 \theta}{\sin(180^{\circ}-\theta) \cdot \cos(90^{\circ}+\theta) + \tan 45^{\circ}} \] **Step 1: Simplify the trigonometric functions.** - \(\sin(180^{\circ}-\theta) = \sin(\theta)\) - \(\cos(90^{\circ}+\theta) = -\sin(\theta)\) - \(\tan(45^{\circ}) = 1\) **Step 2: Substitute these values into the expression.** \[ \frac{\sin^2 \theta}{\sin(\theta) \cdot (-\sin(\theta)) + 1} = \frac{\sin^2 \theta}{-\sin^2 \theta + 1} \] ### 2.5 \[ \frac{\sin(104^{\circ}) \cdot (2 \cos^2(15^{\circ}))}{\tan(38^{\circ}) \cdot \sin^2(412^{\circ})} \] **Step 1: Simplify the trigonometric functions.** - \(\sin(412^{\circ}) = \sin(52^{\circ})\) (since \(412 - 360 = 52\)) **Step 2: Substitute these values into the expression.** \[ \frac{\sin(104^{\circ}) \cdot (2 \cos^2(15^{\circ}))}{\tan(38^{\circ}) \cdot \sin^2(52^{\circ})} \] ### 2.6 \[ \frac{\sin(90^{\circ}+\theta) + \cos(180^{\circ}+\theta) \sin(-\theta)}{\sin(180^{\circ}) - \tan(100^{\circ})} \] **Step 1: Simplify the trigonometric functions.** - \(\sin(90^{\circ}+\theta) = \cos(\theta)\) - \(\cos(180^{\circ}+\theta) = -\cos(\theta)\) - \(\sin(-\theta) = -\sin(\theta)\) - \(\sin(180^{\circ}) = 0\) **Step 2: Substitute these values into the expression.** \[ \frac{\cos(\theta) - \cos(\theta) \sin(\theta)}{0 - \tan(100^{\circ})} \] ### Summary of Results - **2.1:** \(\frac{\sin(x)}{-\sin^2(x) + \cos^2(x)}\) - **2.3:** \(-1\) - **2.4:** \(\frac{\sin^2 \theta}{-\sin^2 \theta + 1}\) - **2.5:** \(\frac{\sin(104^{\circ}) \cdot (2 \cos^2(15^{\circ}))}{\tan(38^{\circ}) \cdot \sin^2(52^{\circ})}\) - **2.6:** \(\frac{\cos(\theta) - \cos(\theta) \sin(\theta)}{-\tan(100^{\circ})}\)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Did you know that trigonometric identities can significantly simplify complex problems? These relationships, like \( \sin(90^\circ - x) = \cos(x) \) and \( \tan(180^\circ + x) = \tan(x) \), help us manipulate and reduce expressions efficiently. Understanding and applying these can save you tons of time when solving problems, turning math into more of a puzzle than a chore! Another fun nugget is the historical journey of trigonometry. It dates back to ancient civilizations like the Babylonians and Greeks, who utilized these concepts in various ways—like astronomy and architecture! Famous figures such as Hipparchus and Ptolemy made astronomical calculations involving trigonometric functions that laid the foundation for modern mathematics. So, every time you tackle a trigonometry problem, you’re participating in a centuries-old tradition!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy