Answer
Here are the simplified forms of the expressions:
7. \( \frac{5}{6} r^{2} t \)
8. \( \sqrt{3} \times k^{2} \)
9. \( \frac{4f\sqrt[5]{3f^{3}h^{3}}}{3} \)
10. \( \frac{3\sqrt[3]{16} \times n^{4} q^{2}}{4} \)
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{\frac{25}{36}}\times r^{2}t\)
- step1: Simplify the root:
\(\frac{5}{6}r^{2}t\)
Calculate or simplify the expression \( \sqrt(192 * k^4 / 64) \).
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{\frac{192k^{4}}{64}}\)
- step1: Divide the terms:
\(\sqrt{3k^{4}}\)
- step2: Reorder the terms:
\(\sqrt{k^{4}\times 3}\)
- step3: Use the properties of radicals:
\(\sqrt{k^{4}}\times \sqrt{3}\)
- step4: Simplify the root:
\(\sqrt{3}\times k^{2}\)
Calculate or simplify the expression \( (432 * n^12 / 64 * q^6)^(1/3) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{432n^{12}}{64}q^{6}\right)^{\frac{1}{3}}\)
- step1: Reduce the fraction:
\(\left(\frac{27n^{12}}{4}q^{6}\right)^{\frac{1}{3}}\)
- step2: Multiply the terms:
\(\left(\frac{27n^{12}q^{6}}{4}\right)^{\frac{1}{3}}\)
- step3: Rewrite the expression:
\(\frac{\left(27n^{12}q^{6}\right)^{\frac{1}{3}}}{4^{\frac{1}{3}}}\)
- step4: Evaluate the power:
\(\frac{3n^{4}q^{2}}{\sqrt[3]{4}}\)
- step5: Simplify:
\(\frac{3\sqrt[3]{4^{2}}\times n^{4}q^{2}}{2^{2}}\)
- step6: Evaluate the power:
\(\frac{3\sqrt[3]{16}\times n^{4}q^{2}}{4}\)
Calculate or simplify the expression \( (3072 * h^3 / 243 * f^8)^(1/5) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{3072h^{3}}{243}f^{8}\right)^{\frac{1}{5}}\)
- step1: Reduce the fraction:
\(\left(\frac{1024h^{3}}{81}f^{8}\right)^{\frac{1}{5}}\)
- step2: Multiply the terms:
\(\left(\frac{1024h^{3}f^{8}}{81}\right)^{\frac{1}{5}}\)
- step3: Rewrite the expression:
\(\frac{\left(1024h^{3}f^{8}\right)^{\frac{1}{5}}}{81^{\frac{1}{5}}}\)
- step4: Evaluate the power:
\(\frac{4h^{\frac{3}{5}}f^{\frac{8}{5}}}{\sqrt[5]{81}}\)
- step5: Simplify:
\(\frac{4f\sqrt[5]{h^{3}f^{3}}}{\sqrt[5]{81}}\)
- step6: Calculate:
\(\frac{4f\sqrt[5]{3f^{3}h^{3}}}{3}\)
Here are the simplified results for each expression:
7. For \( \sqrt{\frac{25}{36}} r^{2} t \):
\[
\frac{5}{6} r^{2} t
\]
8. For \( \sqrt{\frac{192 k^{4}}{64}} \):
\[
\sqrt{3} \times k^{2}
\]
9. For \( \sqrt[5]{\frac{3072 h^{3}}{243 f^{8}}} \):
\[
\frac{4f\sqrt[5]{3f^{3}h^{3}}}{3}
\]
10. For \( \sqrt[3]{\frac{432 n^{12}}{64 q^{6}}} \):
\[
\frac{3\sqrt[3]{16} \times n^{4} q^{2}}{4}
\]
These results provide the simplified forms of the given expressions.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution