Pregunta
upstudy study bank question image url

\( \begin{array}{ll}\text { 7. } \sqrt{\frac{25}{36}} r^{2} t & \text { 8. } \sqrt{\frac{192 k^{4}}{64}} \\ \sqrt[5]{\frac{3072 h^{3}}{243 f^{8}}} & \text { 10. } \sqrt[3]{\frac{432 n^{12}}{64 q^{6}}}\end{array} \)

Ask by Hills Evans. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the simplified forms of the expressions: 7. \( \frac{5}{6} r^{2} t \) 8. \( \sqrt{3} \times k^{2} \) 9. \( \frac{4f\sqrt[5]{3f^{3}h^{3}}}{3} \) 10. \( \frac{3\sqrt[3]{16} \times n^{4} q^{2}}{4} \)

Solución

Simplify the expression by following steps: - step0: Solution: \(\sqrt{\frac{25}{36}}\times r^{2}t\) - step1: Simplify the root: \(\frac{5}{6}r^{2}t\) Calculate or simplify the expression \( \sqrt(192 * k^4 / 64) \). Simplify the expression by following steps: - step0: Solution: \(\sqrt{\frac{192k^{4}}{64}}\) - step1: Divide the terms: \(\sqrt{3k^{4}}\) - step2: Reorder the terms: \(\sqrt{k^{4}\times 3}\) - step3: Use the properties of radicals: \(\sqrt{k^{4}}\times \sqrt{3}\) - step4: Simplify the root: \(\sqrt{3}\times k^{2}\) Calculate or simplify the expression \( (432 * n^12 / 64 * q^6)^(1/3) \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{432n^{12}}{64}q^{6}\right)^{\frac{1}{3}}\) - step1: Reduce the fraction: \(\left(\frac{27n^{12}}{4}q^{6}\right)^{\frac{1}{3}}\) - step2: Multiply the terms: \(\left(\frac{27n^{12}q^{6}}{4}\right)^{\frac{1}{3}}\) - step3: Rewrite the expression: \(\frac{\left(27n^{12}q^{6}\right)^{\frac{1}{3}}}{4^{\frac{1}{3}}}\) - step4: Evaluate the power: \(\frac{3n^{4}q^{2}}{\sqrt[3]{4}}\) - step5: Simplify: \(\frac{3\sqrt[3]{4^{2}}\times n^{4}q^{2}}{2^{2}}\) - step6: Evaluate the power: \(\frac{3\sqrt[3]{16}\times n^{4}q^{2}}{4}\) Calculate or simplify the expression \( (3072 * h^3 / 243 * f^8)^(1/5) \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{3072h^{3}}{243}f^{8}\right)^{\frac{1}{5}}\) - step1: Reduce the fraction: \(\left(\frac{1024h^{3}}{81}f^{8}\right)^{\frac{1}{5}}\) - step2: Multiply the terms: \(\left(\frac{1024h^{3}f^{8}}{81}\right)^{\frac{1}{5}}\) - step3: Rewrite the expression: \(\frac{\left(1024h^{3}f^{8}\right)^{\frac{1}{5}}}{81^{\frac{1}{5}}}\) - step4: Evaluate the power: \(\frac{4h^{\frac{3}{5}}f^{\frac{8}{5}}}{\sqrt[5]{81}}\) - step5: Simplify: \(\frac{4f\sqrt[5]{h^{3}f^{3}}}{\sqrt[5]{81}}\) - step6: Calculate: \(\frac{4f\sqrt[5]{3f^{3}h^{3}}}{3}\) Here are the simplified results for each expression: 7. For \( \sqrt{\frac{25}{36}} r^{2} t \): \[ \frac{5}{6} r^{2} t \] 8. For \( \sqrt{\frac{192 k^{4}}{64}} \): \[ \sqrt{3} \times k^{2} \] 9. For \( \sqrt[5]{\frac{3072 h^{3}}{243 f^{8}}} \): \[ \frac{4f\sqrt[5]{3f^{3}h^{3}}}{3} \] 10. For \( \sqrt[3]{\frac{432 n^{12}}{64 q^{6}}} \): \[ \frac{3\sqrt[3]{16} \times n^{4} q^{2}}{4} \] These results provide the simplified forms of the given expressions.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify \( \sqrt{\frac{25}{36}} r^{2} t \), you first take the square root of the fraction and then apply it to the variables. The square root of \(\frac{25}{36}\) is \(\frac{5}{6}\), so the expression simplifies to \(\frac{5}{6} r t\). For \( \sqrt{\frac{192 k^{4}}{64}} \), you can simplify the fraction first. \(\frac{192}{64} = 3\), so it becomes \( \sqrt{3 k^{4}} = \sqrt{3} k^2\). Now, let’s tackle \( \sqrt[5]{\frac{3072 h^{3}}{243 f^{8}}} \). Simplifying the fraction gives you \( \frac{3072}{243} \), which reduces to \(\frac{128}{27}\) after calculating. Therefore, the fifth root becomes \( \sqrt[5]{\frac{128}{27}} h^{\frac{3}{5}} f^{-\frac{8}{5}}\). Lastly, \( \sqrt[3]{\frac{432 n^{12}}{64 q^{6}}} \) can be simplified by first reducing the fraction. You find that \( \frac{432}{64} = 6.75 \), but for integer results, you can factor it to \( \frac{27}{4}\). So, it becomes \( \sqrt[3]{\frac{27}{4}} n^{4} q^{-2}\) leading to \(\frac{3}{2} n^{4} q^{-2}\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad