\( \begin{array}{ll}\text { 7. } \sqrt{\frac{25}{36}} r^{2} t & \text { 8. } \sqrt{\frac{192 k^{4}}{64}} \\ \sqrt[5]{\frac{3072 h^{3}}{243 f^{8}}} & \text { 10. } \sqrt[3]{\frac{432 n^{12}}{64 q^{6}}}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To simplify \( \sqrt{\frac{25}{36}} r^{2} t \), you first take the square root of the fraction and then apply it to the variables. The square root of \(\frac{25}{36}\) is \(\frac{5}{6}\), so the expression simplifies to \(\frac{5}{6} r t\). For \( \sqrt{\frac{192 k^{4}}{64}} \), you can simplify the fraction first. \(\frac{192}{64} = 3\), so it becomes \( \sqrt{3 k^{4}} = \sqrt{3} k^2\). Now, let’s tackle \( \sqrt[5]{\frac{3072 h^{3}}{243 f^{8}}} \). Simplifying the fraction gives you \( \frac{3072}{243} \), which reduces to \(\frac{128}{27}\) after calculating. Therefore, the fifth root becomes \( \sqrt[5]{\frac{128}{27}} h^{\frac{3}{5}} f^{-\frac{8}{5}}\). Lastly, \( \sqrt[3]{\frac{432 n^{12}}{64 q^{6}}} \) can be simplified by first reducing the fraction. You find that \( \frac{432}{64} = 6.75 \), but for integer results, you can factor it to \( \frac{27}{4}\). So, it becomes \( \sqrt[3]{\frac{27}{4}} n^{4} q^{-2}\) leading to \(\frac{3}{2} n^{4} q^{-2}\).
