Question
upstudy study bank question image url

Solve the equation in the interval \( 0 \leq \theta<2 \pi \) \[ \sin (4 \theta)-\sin (2 \theta)=0 \] What are the solutions in the interval \( 0 \leq \theta<2 \pi \) ? A. \( \left\{0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{5 \pi}{6}, \pi, \frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{11 \pi}{6}\right\} \) B. \( \left\{0, \frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \pi, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}\right\} \) C. \( \left\{0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{5 \pi}{3}\right\} \) D. \( \left\{0, \frac{\pi}{6}, \frac{\pi}{2}, \frac{2 \pi}{3}, \pi, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{5 \pi}{3}\right\} \) E. \( \left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}\right\} \) F. \( \left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{7 \pi}{4}\right\} \)

Ask by Summers Marsh. in the United States
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The solutions are \( \left\{0, \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}\right\} \), which corresponds to choice B.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Mind Expander

To solve the equation \(\sin(4\theta) - \sin(2\theta) = 0\), we can use the sine identity. We rewrite it as \(\sin(4\theta) = \sin(2\theta)\). This gives us two scenarios: 1. \(4\theta = 2\theta + 2k\pi\) or 2. \(4\theta = \pi - 2\theta + 2k\pi\), where \(k\) is an integer. From the first scenario, we simplify \(2\theta = 2k\pi\) leading to \(\theta = k\pi\). In the interval \(0 \leq \theta < 2\pi\), \(k\) can be \(0\) or \(1\), giving us the solutions \(\theta = 0\) and \(\theta = \pi\). From the second scenario, we have \(6\theta = \pi + 2k\pi\) leading to \(\theta = \frac{\pi}{6} + \frac{k\pi}{3}\). In the given interval, \(k\) can be \(0, 1, 2, 3, 4, 5\), giving us the solutions \(\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}\). Combining all solutions, we have: \[ \theta = \left\{ 0, \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6} \right\} \] The correct answer is B: \(\left\{0, \frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \pi, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}\right\}\)

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy