Solve the equation in the interval \( 0 \leq \theta<2 \pi \) \[ \sin (4 \theta)-\sin (2 \theta)=0 \] What are the solutions in the interval \( 0 \leq \theta<2 \pi \) ? A. \( \left\{0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{5 \pi}{6}, \pi, \frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{11 \pi}{6}\right\} \) B. \( \left\{0, \frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \pi, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}\right\} \) C. \( \left\{0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{5 \pi}{3}\right\} \) D. \( \left\{0, \frac{\pi}{6}, \frac{\pi}{2}, \frac{2 \pi}{3}, \pi, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{5 \pi}{3}\right\} \) E. \( \left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}\right\} \) F. \( \left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{7 \pi}{4}\right\} \)
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
Mind Expander
To solve the equation \(\sin(4\theta) - \sin(2\theta) = 0\), we can use the sine identity. We rewrite it as \(\sin(4\theta) = \sin(2\theta)\). This gives us two scenarios: 1. \(4\theta = 2\theta + 2k\pi\) or 2. \(4\theta = \pi - 2\theta + 2k\pi\), where \(k\) is an integer. From the first scenario, we simplify \(2\theta = 2k\pi\) leading to \(\theta = k\pi\). In the interval \(0 \leq \theta < 2\pi\), \(k\) can be \(0\) or \(1\), giving us the solutions \(\theta = 0\) and \(\theta = \pi\). From the second scenario, we have \(6\theta = \pi + 2k\pi\) leading to \(\theta = \frac{\pi}{6} + \frac{k\pi}{3}\). In the given interval, \(k\) can be \(0, 1, 2, 3, 4, 5\), giving us the solutions \(\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}\). Combining all solutions, we have: \[ \theta = \left\{ 0, \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6} \right\} \] The correct answer is B: \(\left\{0, \frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \pi, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}\right\}\)