Question
upstudy study bank question image url

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i

Ask by Mckenzie Rose. in South Africa
Feb 22,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

### Simplified Solutions: 1. **8.1** \[ \frac{\sin(180^{\circ}-x) \cdot \tan(360^{\circ}-x)}{\cos(80^{\circ}-x)} \times \frac{\cos(-180^{\circ}-x)}{\cos(360^{\circ}+x) \sin(360^{\circ}-x)} = \frac{\tan x}{\cos(80^{\circ}-x)} \] 2. **8.2** \[ \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} = 1 \] 3. **8.3** \[ \frac{\sin(-\theta) + \cos 120^{\circ} + \tan(-180^{\circ}-\theta)}{\sin^{2} 225^{\circ} - \tan(-\theta) - \cos(90^{\circ}+\theta)} = \frac{-\sin \theta - \frac{1}{2} + \tan \theta}{\frac{1}{2} + \tan \theta + \sin \theta} \] 4. **8.4** \[ 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin(-157^{\circ})} = 4^{x} \frac{\sin 67^{\circ} \cdot \tan 23^{\circ} \cdot \cos 67^{\circ}}{\sin 23^{\circ}} \] 5. **8.5** \[ \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan(-45^{\circ}) \cdot \cos 600^{\circ}} = 3\sqrt{3} \] 6. **8.6** \[ \frac{\tan(180^{\circ}-x) \cdot \sin(90^{\circ}+x)}{\sin(-x)} - \sin y \cdot \cos(90^{\circ}-y) = \frac{-\tan x \cdot \cos x}{-\sin x} - \sin y \cdot \sin y = \cot x \cdot \cos x + \sin^2 y \] 7. **8.7** \[ \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin(-45^{\circ}) \cdot \sin 65^{\circ}} = \frac{\frac{\sqrt{3}}{3} \cdot \frac{\sqrt{3}}{2} \cdot \cos 25^{\circ}}{-\frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}} \cdot \sin 65^{\circ}} = \frac{\frac{1}{2} \cdot \cos 25^{\circ}}{\frac{1}{2} \cdot \sin 65^{\circ}} = \frac{\cos 25^{\circ}}{\sin 65^{\circ}} \] 8. **8.8** \[ \frac{\tan(180^{\circ}-x) \cdot \sin(90^{\circ}-x)}{\cos(90^{\circ}+x)} - \frac{\cos(180^{\circ}-x)}{\sin(90^{\circ}+x)} = \frac{-\tan x \cdot \cos x}{-\sin x} - \frac{-\cos x}{\sin x} = \cot x \cdot \cos x + \cot x = \cot x (\cos x + 1) \] 9. **8.9** \[ \frac{\sin 189^{\circ}}{\tan 549^{\circ}} - \frac

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Beyond the Answer

To enhance your understanding of these trigonometric problems, let’s dive into some exciting insights! Trigonometry isn't just an abstract concept. Its principles are deeply embedded in real-life scenarios, such as architecture, engineering, and even game development. Think about it—when constructing tall buildings or designing video game graphics, sine, cosine, and tangent help ensure that everything fits together perfectly and looks stunning on screen! When tackling trigonometric equations, one common mistake is neglecting the signs of trigonometric functions in different quadrants. Remember, sine is positive in the first and second quadrants, while cosine is positive in the first and fourth. Don’t forget to sketch the unit circle or a quadrant diagram—this will keep you visually oriented and clear-headed as you solve your problems!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy