Question
upstudy study bank question image url

\( \leftarrow \begin{array}{l}\text { Factor. } \\ 6 a^{2}+11 a-35\end{array} \)

Ask by Mills Bowers. in the United States
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( 6a^{2} + 11a - 35 = (2a + 7)(3a - 5) \)

Solution

To factor the quadratic 6a² + 11a − 35, follow these steps: 1. Multiply the coefficient of a² by the constant term: 6 × (−35) = −210. 2. Find two numbers that multiply to −210 and add to the middle coefficient, 11. The numbers 21 and −10 work since 21 × (−10) = −210 and 21 + (−10) = 11. 3. Rewrite the middle term using these numbers:   6a² + 21a − 10a − 35. 4. Group the terms:   (6a² + 21a) + (−10a − 35). 5. Factor each group:   3a(2a + 7) − 5(2a + 7). 6. Notice that (2a + 7) is common, so factor it out to get:   (2a + 7)(3a − 5). Thus, the factored form of 6a² + 11a − 35 is (2a + 7)(3a − 5).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To factor the quadratic expression \(6a^{2}+11a-35\), we are looking for two numbers that multiply to \(6 \cdot (-35) = -210\) and add up to \(11\). Those numbers are \(21\) and \(-10\). Now, we can rewrite the expression: \(6a^{2}+21a-10a-35\). Grouping the terms gives us: \(3a(2a + 7) - 5(2a + 7)\). Thus, we can factor by grouping: \((3a - 5)(2a + 7)\). Now you have the factored form as \((3a - 5)(2a + 7)\)!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy