Question
upstudy study bank question image url

5.) \( 4 x^{2}-31 x+21 \)

Ask by Carrillo Griffin. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\(4x^{2}-31x+21 = (x-7)(4x-3)\).

Solution

Factor the expression \( 4x^2-31x+21 \). Factor the expression by following steps: - step0: Factor: \(4x^{2}-31x+21\) - step1: Rewrite the expression: \(4x^{2}+\left(-3-28\right)x+21\) - step2: Calculate: \(4x^{2}-3x-28x+21\) - step3: Rewrite the expression: \(x\times 4x-x\times 3-7\times 4x+7\times 3\) - step4: Factor the expression: \(x\left(4x-3\right)-7\left(4x-3\right)\) - step5: Factor the expression: \(\left(x-7\right)\left(4x-3\right)\) The expression \(4x^{2}-31x+21\) can be factored as \((x-7)(4x-3)\).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Let’s factor the quadratic expression \( 4x^2 - 31x + 21 \). To do so, we look for two numbers that multiply to \( 4 \times 21 = 84 \) and add up to \( -31 \). The numbers \( -28 \) and \( -3 \) do the trick! We can rewrite the expression as \( 4x^2 - 28x - 3x + 21 \) and group it: \[ 4x(x - 7) - 3(x - 7) = (4x - 3)(x - 7). \] So the factored form is \( (4x - 3)(x - 7) \). Next, let's dig into how this quadratic can arise in real-world scenarios: Imagine you're designing a garden and want to express the area with a specific shape. Quadratics often pop up in scenarios involving areas, trajectories of objects, or profit maximizing. This polynomial could represent a cross-sectional area of a garden plot, showcasing how mathematics can beautify our surroundings!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy