Pregunta
upstudy study bank question image url

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i

Ask by Mckenzie Rose. in South Africa
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

### Simplified Solutions: 1. **8.1** \[ \frac{\sin(180^{\circ}-x) \cdot \tan(360^{\circ}-x)}{\cos(80^{\circ}-x)} \times \frac{\cos(-180^{\circ}-x)}{\cos(360^{\circ}+x) \sin(360^{\circ}-x)} = \frac{\tan x}{\cos(80^{\circ}-x)} \] 2. **8.2** \[ \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} = 1 \] 3. **8.3** \[ \frac{\sin(-\theta) + \cos 120^{\circ} + \tan(-180^{\circ}-\theta)}{\sin^{2} 225^{\circ} - \tan(-\theta) - \cos(90^{\circ}+\theta)} = \frac{-\sin \theta - \frac{1}{2} + \tan \theta}{\frac{1}{2} + \tan \theta + \sin \theta} \] 4. **8.4** \[ 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin(-157^{\circ})} = 4^{x} \frac{\sin 67^{\circ} \cdot \tan 23^{\circ} \cdot \cos 67^{\circ}}{\sin 23^{\circ}} \] 5. **8.5** \[ \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan(-45^{\circ}) \cdot \cos 600^{\circ}} = 3\sqrt{3} \] 6. **8.6** \[ \frac{\tan(180^{\circ}-x) \cdot \sin(90^{\circ}+x)}{\sin(-x)} - \sin y \cdot \cos(90^{\circ}-y) = \frac{-\tan x \cdot \cos x}{-\sin x} - \sin y \cdot \sin y = \cot x \cdot \cos x + \sin^2 y \] 7. **8.7** \[ \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin(-45^{\circ}) \cdot \sin 65^{\circ}} = \frac{\frac{\sqrt{3}}{3} \cdot \frac{\sqrt{3}}{2} \cdot \cos 25^{\circ}}{-\frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}} \cdot \sin 65^{\circ}} = \frac{\frac{1}{2} \cdot \cos 25^{\circ}}{\frac{1}{2} \cdot \sin 65^{\circ}} = \frac{\cos 25^{\circ}}{\sin 65^{\circ}} \] 8. **8.8** \[ \frac{\tan(180^{\circ}-x) \cdot \sin(90^{\circ}-x)}{\cos(90^{\circ}+x)} - \frac{\cos(180^{\circ}-x)}{\sin(90^{\circ}+x)} = \frac{-\tan x \cdot \cos x}{-\sin x} - \frac{-\cos x}{\sin x} = \cot x \cdot \cos x + \cot x = \cot x (\cos x + 1) \] 9. **8.9** \[ \frac{\sin 189^{\circ}}{\tan 549^{\circ}} - \frac

Solución

Let's simplify each of the expressions step by step. ### 8.1 We need to simplify: \[ \frac{\sin(180^{\circ}-x) \cdot \tan(360^{\circ}-x)}{\cos(80^{\circ}-x)} \times \frac{\cos(-180^{\circ}-x)}{\cos(360^{\circ}+x) \sin(360^{\circ}-x)} \] **Step 1: Simplify each trigonometric function.** - \(\sin(180^{\circ}-x) = \sin x\) - \(\tan(360^{\circ}-x) = -\tan x\) - \(\cos(-180^{\circ}-x) = -\cos x\) - \(\cos(360^{\circ}+x) = \cos x\) - \(\sin(360^{\circ}-x) = -\sin x\) **Step 2: Substitute these values into the expression.** \[ \frac{\sin x \cdot (-\tan x)}{\cos(80^{\circ}-x)} \times \frac{-\cos x}{\cos x \cdot (-\sin x)} \] **Step 3: Simplify the expression.** \[ = \frac{-\sin x \cdot (-\tan x)}{\cos(80^{\circ}-x)} \times \frac{-\cos x}{\cos x \cdot (-\sin x)} = \frac{\sin x \cdot \tan x}{\cos(80^{\circ}-x)} \times \frac{\cos x}{\cos x \cdot \sin x} \] \[ = \frac{\tan x}{\cos(80^{\circ}-x)} \] ### 8.2 We need to simplify: \[ \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \] **Step 1: Simplify each trigonometric function.** - \(\cos 135^{\circ} = -\frac{1}{\sqrt{2}}\) - \(\sin 160^{\circ} = \sin(180^{\circ}-20^{\circ}) = \sin 20^{\circ}\) - \(\sin 225^{\circ} = -\frac{1}{\sqrt{2}}\) - \(\cos 70^{\circ} = \sin 20^{\circ}\) **Step 2: Substitute these values into the expression.** \[ \frac{-\frac{1}{\sqrt{2}} \sin 20^{\circ}}{-\frac{1}{\sqrt{2}} \sin 20^{\circ}} = 1 \] ### 8.3 We need to simplify: \[ \frac{\sin(-\theta) + \cos 120^{\circ} + \tan(-180^{\circ}-\theta)}{\sin^{2} 225^{\circ} - \tan(-\theta) - \cos(90^{\circ}+\theta)} \] **Step 1: Simplify each trigonometric function.** - \(\sin(-\theta) = -\sin \theta\) - \(\cos 120^{\circ} = -\frac{1}{2}\) - \(\tan(-180^{\circ}-\theta) = \tan(-\theta) = -\tan \theta\) - \(\sin^{2} 225^{\circ} = \left(-\frac{1}{\sqrt{2}}\right)^{2} = \frac{1}{2}\) - \(\tan(-\theta) = -\tan \theta\) - \(\cos(90^{\circ}+\theta) = -\sin \theta\) **Step 2: Substitute these values into the expression.** \[ \frac{-\sin \theta - \frac{1}{2} + \tan \theta}{\frac{1}{2} + \tan \theta + \sin \theta} \] ### 8.4 We need to simplify: \[ 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin(-157^{\circ})} \] **Step 1: Simplify each trigonometric function.** - \(\sin 247^{\circ} = -\sin 67^{\circ}\) - \(\tan 23^{\circ} = \tan 23^{\circ}\) - \(\cos 113^{\circ} = -\cos 67^{\circ}\) - \(\sin(-157^{\circ}) = -\sin 157^{\circ} = -\sin(180^{\circ}-23^{\circ}) = -\sin 23^{\circ}\) **Step 2: Substitute these values into the expression.** \[ 4^{x} \frac{-\sin 67^{\circ} \cdot \tan 23^{\circ} \cdot (-\cos 67^{\circ})}{-\sin 23^{\circ}} = 4^{x} \frac{\sin 67^{\circ} \cdot \tan 23^{\circ} \cdot \cos 67^{\circ}}{\sin 23^{\circ}} \] ### 8.5 We need to simplify: \[ \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan(-45^{\circ}) \cdot \cos 600^{\circ}} \] **Step 1: Simplify each trigonometric function.** - \(\cos 150^{\circ} = -\frac{\sqrt{3}}{2}\) - \(\sin 270^{\circ} = -1\) - \(\tan(-45^{\circ}) = -1\) - \(\cos 600^{\circ} = \cos(600^{\circ} - 360^{\circ}) = \cos 240^{\circ} = -\frac{1}{2}\) **Step 2: Substitute these values into the expression.** \[ \frac{3 \cdot -\frac{\sqrt{3}}{2} \cdot -1}{-1 \cdot -\frac{1}{2}} = \frac{3\sqrt{3}}{1} = 3\sqrt{3} \] ### 8.6 We need to simplify: \[ \frac{\tan(180^{\circ}-x) \cdot \sin(90^{\circ}+x)}{\sin(-x)} - \sin y \cdot \cos(90^{\circ}-y) \] **Step 1: Simplify each

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To enhance your understanding of these trigonometric problems, let’s dive into some exciting insights! Trigonometry isn't just an abstract concept. Its principles are deeply embedded in real-life scenarios, such as architecture, engineering, and even game development. Think about it—when constructing tall buildings or designing video game graphics, sine, cosine, and tangent help ensure that everything fits together perfectly and looks stunning on screen! When tackling trigonometric equations, one common mistake is neglecting the signs of trigonometric functions in different quadrants. Remember, sine is positive in the first and second quadrants, while cosine is positive in the first and fourth. Don’t forget to sketch the unit circle or a quadrant diagram—this will keep you visually oriented and clear-headed as you solve your problems!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad