Question
upstudy study bank question image url

La differenza delle diagonali di un rombo è 42 cm e una ei \( \frac{5}{12} \) dell'altra, Calcola l'area. \( \left[1080 \mathrm{~cm}^{2}\right] \)

Ask by Gray Reeves. in Italy
Feb 18,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The area of the rhombus is 1080 cm².

Solution

To solve the problem, we need to find the lengths of the diagonals of the rhombus and then use them to calculate the area. Let's denote the lengths of the diagonals as: - \( d_1 \): the longer diagonal - \( d_2 \): the shorter diagonal From the problem, we have the following conditions: 1. The difference between the diagonals is \( d_1 - d_2 = 42 \) cm. 2. The shorter diagonal is \( \frac{5}{12} \) of the longer diagonal, which can be expressed as \( d_2 = \frac{5}{12} d_1 \). Now, we can substitute the second equation into the first equation to find \( d_1 \). ### Step 1: Substitute and Solve for \( d_1 \) Substituting \( d_2 \) into the first equation: \[ d_1 - \frac{5}{12} d_1 = 42 \] This simplifies to: \[ \frac{7}{12} d_1 = 42 \] Now, we can solve for \( d_1 \): \[ d_1 = 42 \cdot \frac{12}{7} \] ### Step 2: Calculate \( d_1 \) Let's calculate \( d_1 \): \[ d_1 = 42 \cdot \frac{12}{7} = 72 \text{ cm} \] ### Step 3: Calculate \( d_2 \) Now that we have \( d_1 \), we can find \( d_2 \): \[ d_2 = \frac{5}{12} d_1 = \frac{5}{12} \cdot 72 \] ### Step 4: Calculate \( d_2 \) Calculating \( d_2 \): \[ d_2 = \frac{5 \cdot 72}{12} = 30 \text{ cm} \] ### Step 5: Calculate the Area of the Rhombus The area \( A \) of a rhombus can be calculated using the formula: \[ A = \frac{1}{2} d_1 d_2 \] Substituting the values of \( d_1 \) and \( d_2 \): \[ A = \frac{1}{2} \cdot 72 \cdot 30 \] ### Step 6: Calculate the Area Now, let's calculate the area: \[ A = \frac{1}{2} \cdot 72 \cdot 30 = 1080 \text{ cm}^2 \] Thus, the area of the rhombus is \( 1080 \text{ cm}^2 \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

In un rombo, le diagonali si incontrano perpendicolarmente e la loro lunghezza è direttamente collegata all'area. Se la differenza delle diagonali è di 42 cm e una diagonale è \( \frac{5}{12} \) dell'altra, possiamo denotare la diagonale maggiore come \( d_1 \) e la minore come \( d_2 \). Facendo i conti, impostiamo le equazioni: \( d_1 - d_2 = 42 \) e \( d_2 = \frac{5}{12} d_1 \). Risolvendo il sistema otteniamo i valori di \( d_1 \) e \( d_2 \); successivamente, l'area si calcola con la formula \( \text{Area} = \frac{1}{2} d_1 d_2 \). Infine, si ottiene un'area di \( 1080 \mathrm{~cm}^{2} \). Ora sei pronto per calcolare l'area di un rombo come un vero esperto! Divertiti a esplorare i segreti delle figure geometriche, magari giocando a misurare le diagonali di oggetti reali intorno a te!

Latest Geometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy