Question
upstudy study bank question image url

A body of mass 10 kg moves between two points on a horizontal road and does 500 J of work against friction. If the initial speed of the body is \( 20 \mathrm{~ms}^{-1} \), calculate its final speed

Ask by Knight Salinas. in Ghana
Feb 13,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The final speed of the body is approximately 17.32 m/s.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Extra Insights

To find the final speed of the body, we can use the work-energy principle, which states that the work done on an object is equal to the change in its kinetic energy. 1. The initial kinetic energy (KE_initial) can be calculated with the formula: \[ KE_{\text{initial}} = \frac{1}{2} m v^2 = \frac{1}{2} \times 10 \, \text{kg} \times (20 \, \text{ms}^{-1})^2 = \frac{1}{2} \times 10 \times 400 = 2000 \, \text{J} \] 2. The work done against friction (W) is given as \(500 \, \text{J}\). Since this work is done against the motion, it will reduce the kinetic energy: \[ KE_{\text{final}} = KE_{\text{initial}} - W = 2000 \, \text{J} - 500 \, \text{J} = 1500 \, \text{J} \] 3. To find the final speed \(v_f\), we can use the kinetic energy formula: \[ KE_{\text{final}} = \frac{1}{2} m v_f^2 \implies 1500 \, \text{J} = \frac{1}{2} \times 10 \, \text{kg} \times v_f^2 \] 4. Solving for \(v_f^2\): \[ 1500 = 5 v_f^2 \implies v_f^2 = \frac{1500}{5} = 300 \] 5. Finally, taking the square root gives: \[ v_f = \sqrt{300} \approx 17.32 \, \text{ms}^{-1} \] Therefore, the final speed of the body is approximately \( 17.32 \, \text{ms}^{-1} \).

Latest Physics Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy