Answer
The cubic function that fits the points is \( f(x) = 2x^3 - 2x^2 - 3x + 7 \).
Solution
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}a+b+c+d=4\\8a+4b+2c+d=9\\27a+9b+3c+d=34\\-8a+4b-2c+d=-11\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}a=4-b-c-d\\8a+4b+2c+d=9\\27a+9b+3c+d=34\\-8a+4b-2c+d=-11\end{array}\right.\)
- step2: Substitute the value of \(a:\)
\(\left\{ \begin{array}{l}8\left(4-b-c-d\right)+4b+2c+d=9\\27\left(4-b-c-d\right)+9b+3c+d=34\\-8\left(4-b-c-d\right)+4b-2c+d=-11\end{array}\right.\)
- step3: Simplify:
\(\left\{ \begin{array}{l}32-4b-6c-7d=9\\108-18b-24c-26d=34\\-32+12b+6c+9d=-11\end{array}\right.\)
- step4: Solve the equation:
\(\left\{ \begin{array}{l}b=\frac{23-6c-7d}{4}\\108-18b-24c-26d=34\\-32+12b+6c+9d=-11\end{array}\right.\)
- step5: Substitute the value of \(b:\)
\(\left\{ \begin{array}{l}108-18\times \frac{23-6c-7d}{4}-24c-26d=34\\-32+12\times \frac{23-6c-7d}{4}+6c+9d=-11\end{array}\right.\)
- step6: Simplify:
\(\left\{ \begin{array}{l}108-\frac{9\left(23-6c-7d\right)}{2}-24c-26d=34\\37-12c-12d=-11\end{array}\right.\)
- step7: Solve the equation:
\(\left\{ \begin{array}{l}c=\frac{59-11d}{6}\\37-12c-12d=-11\end{array}\right.\)
- step8: Substitute the value of \(c:\)
\(37-12\times \frac{59-11d}{6}-12d=-11\)
- step9: Simplify:
\(-81+10d=-11\)
- step10: Move the constant to the right side:
\(10d=-11+81\)
- step11: Add the numbers:
\(10d=70\)
- step12: Divide both sides:
\(\frac{10d}{10}=\frac{70}{10}\)
- step13: Divide the numbers:
\(d=7\)
- step14: Substitute the value of \(d:\)
\(c=\frac{59-11\times 7}{6}\)
- step15: Calculate:
\(c=-3\)
- step16: Substitute the values of \(c,d:\)
\(b=\frac{23-6\left(-3\right)-7\times 7}{4}\)
- step17: Calculate:
\(b=-2\)
- step18: Substitute the values of \(b,c,d:\)
\(a=4-\left(-2\right)-\left(-3\right)-7\)
- step19: Substitute back:
\(a=4+2+3-7\)
- step20: Calculate:
\(a=2\)
- step21: Calculate:
\(\left\{ \begin{array}{l}a=2\\b=-2\\c=-3\\d=7\end{array}\right.\)
- step22: Check the solution:
\(\left\{ \begin{array}{l}a=2\\b=-2\\c=-3\\d=7\end{array}\right.\)
- step23: Rewrite:
\(\left(a,b,c,d\right) = \left(2,-2,-3,7\right)\)
To find a cubic function that fits the given points \((1,4)\), \((2,9)\), \((3,34)\), and \((-2,-11)\), we can express the cubic function in the form:
\[
f(x) = ax^3 + bx^2 + cx + d
\]
We will set up a system of equations based on the provided points:
1. For the point \((1, 4)\):
\[
a(1)^3 + b(1)^2 + c(1) + d = 4 \quad \Rightarrow \quad a + b + c + d = 4
\]
2. For the point \((2, 9)\):
\[
a(2)^3 + b(2)^2 + c(2) + d = 9 \quad \Rightarrow \quad 8a + 4b + 2c + d = 9
\]
3. For the point \((3, 34)\):
\[
a(3)^3 + b(3)^2 + c(3) + d = 34 \quad \Rightarrow \quad 27a + 9b + 3c + d = 34
\]
4. For the point \((-2, -11)\):
\[
a(-2)^3 + b(-2)^2 + c(-2) + d = -11 \quad \Rightarrow \quad -8a + 4b - 2c + d = -11
\]
Now we have the following system of equations:
\[
\begin{align*}
1. & \quad a + b + c + d = 4 \\
2. & \quad 8a + 4b + 2c + d = 9 \\
3. & \quad 27a + 9b + 3c + d = 34 \\
4. & \quad -8a + 4b - 2c + d = -11
\end{align*}
\]
Solving this system, we find:
\[
(a, b, c, d) = (2, -2, -3, 7)
\]
Thus, the cubic function that fits the given points is:
\[
f(x) = 2x^3 - 2x^2 - 3x + 7
\]
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution