Question
upstudy study bank question image url

8b) Solve using logs \( \rightarrow 5(7)^{5 x}=60 \)

Ask by Griffiths Weaver. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( x = \frac{\log_{7}(12)}{5} \)

Solution

Solve the equation \( 5(7)^{5x}=60 \). Solve the equation by following steps: - step0: Solve for \(x\): \(5\times 7^{5x}=60\) - step1: Divide both sides: \(\frac{5\times 7^{5x}}{5}=\frac{60}{5}\) - step2: Divide the numbers: \(7^{5x}=12\) - step3: Take the logarithm of both sides: \(\log_{7}{\left(7^{5x}\right)}=\log_{7}{\left(12\right)}\) - step4: Evaluate the logarithm: \(5x=\log_{7}{\left(12\right)}\) - step5: Divide both sides: \(\frac{5x}{5}=\frac{\log_{7}{\left(12\right)}}{5}\) - step6: Divide the numbers: \(x=\frac{\log_{7}{\left(12\right)}}{5}\) The solution to the equation \(5(7)^{5x}=60\) is \(x=\frac{\log_{7}(12)}{5}\).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To solve the equation \( 5(7)^{5x} = 60 \), first, isolate the exponential term by dividing both sides by 5: \[ (7)^{5x} = \frac{60}{5} = 12 \] Next, apply logarithms to both sides (using natural logarithm or base 10 is fine): \[ \log((7)^{5x}) = \log(12) \] Using the power rule of logarithms, this simplifies to: \[ 5x \log(7) = \log(12) \] Now, solve for \( x \): \[ x = \frac{\log(12)}{5 \log(7)} \] You can plug in your calculator to find the numerical value of \( x \). Happy calculating! --- The use of logarithms dates back to the early 17th century and revolutionized mathematics. They were developed by John Napier for simplifying calculations, especially multiplication and division. Imagine solving complex equations without the convenience of calculators—Napier's invention made life easier for astronomers and navigators back then! If you're interested in diving deeper into logarithms, consider reading "Logarithms: A Brief History" or "The Art of Logarithmic Calculations." These resources can give you a playful insight into how logarithms transformed calculation methods and their application in various fields we encounter today!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy