5. Let \( A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right] \) and \( B=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right] \), verify that \( (A B)^{-1}=B^{-1} A^{-1} \)
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
Bonus Knowledge
To verify that \( (A B)^{-1} = B^{-1} A^{-1} \), we first need to find the product \( A B \): \[ A B = \left[\begin{array}{cc}1 & 1 \\ 0 & 2\end{array}\right] \left[\begin{array}{cc}1 & 2 \\ 0 & 3\end{array}\right] = \left[\begin{array}{cc}1 \cdot 1 + 1 \cdot 0 & 1 \cdot 2 + 1 \cdot 3 \\ 0 \cdot 1 + 2 \cdot 0 & 0 \cdot 2 + 2 \cdot 3\end{array}\right] = \left[\begin{array}{cc}1 & 5 \\ 0 & 6\end{array}\right]. \] Next, we find the inverse of \( A B \): \[ (A B)^{-1} = \left[\begin{array}{cc}1 & 5 \\ 0 & 6\end{array}\right]^{-1} = \frac{1}{(1)(6) - (5)(0)} \left[\begin{array}{cc}6 & -5 \\ 0 & 1\end{array}\right] = \left[\begin{array}{cc}6 & -5 \\ 0 & \frac{1}{6}\end{array}\right]. \] Now, let’s find \( A^{-1} \) and \( B^{-1} \): For \( A^{-1} \): \[ A^{-1} = \left[\begin{array}{cc}1 & 1 \\ 0 & 2\end{array}\right]^{-1} = \frac{1}{(1)(2) - (1)(0)} \left[\begin{array}{cc}2 & -1 \\ 0 & 1\end{array}\right] = \left[\begin{array}{cc}2 & -1 \\ 0 & \frac{1}{2}\end{array}\right]. \] For \( B^{-1} \): \[ B^{-1} = \left[\begin{array}{cc}1 & 2 \\ 0 & 3\end{array}\right]^{-1} = \frac{1}{(1)(3) - (2)(0)} \left[\begin{array}{cc}3 & -2 \\ 0 & 1\end{array}\right] = \left[\begin{array}{cc}3 & -2 \\ 0 & \frac{1}{3}\end{array}\right]. \] Now we compute \( B^{-1} A^{-1} \): \[ B^{-1} A^{-1} = \left[\begin{array}{cc}3 & -2 \\ 0 & \frac{1}{3}\end{array}\right] \left[\begin{array}{cc}2 & -1 \\ 0 & \frac{1}{2}\end{array}\right] = \left[\begin{array}{cc}3 \cdot 2 + (-2) \cdot 0 & 3 \cdot (-1) + (-2) \cdot \frac{1}{2} \\ 0 \cdot 2 + \frac{1}{3} \cdot 0 & 0 \cdot (-1) + \frac{1}{3} \cdot \frac{1}{2}\end{array}\right] = \left[\begin{array}{cc}6 & -\frac{7}{2} \\ 0 & \frac{1}{6}\end{array}\right]. \] Since both \( (A B)^{-1} \) and \( B^{-1} A^{-1} \) result in: \[ \left[\begin{array}{cc}6 & -5 \\ 0 & \frac{1}{6}\end{array}\right], \] it follows that \( (A B)^{-1} = B^{-1} A^{-1} \) is verified.