Find the derivative of each of these functions, 9. \( y=\left(3 x^{2}+6\right)(2 x-1) \) 10. \( f(x)=e^{x}(2 x+\sin x) \) 11. \( y=\frac{4 x}{x^{2}+1} \) 12. \( y=\frac{x-2}{2 x^{2}-\cos x} \) 13. \( f(x)=\sin 5 x \) 14. \( f(x)=\log 2 x \) 15. \( f(x)=\left(x^{3}+2 x\right)^{27} \)
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
Beyond the Answer
To find the derivatives of each function, we will use various differentiation rules such as the product rule, quotient rule, and chain rule. 9. For \( y=\left(3 x^{2}+6\right)(2 x-1) \), we apply the product rule: \[ y' = (3x^2 + 6)'(2x - 1) + (3x^2 + 6)(2x - 1)' = (6x)(2x - 1) + (3x^2 + 6)(2) \] Simplifying, we find \( y' = 12x^2 - 6x + 6x^2 + 12 = 18x^2 + 12 \). 10. For \( f(x)=e^{x}(2 x+\sin x) \), we again use the product rule: \[ f'(x) = (e^x)'(2x + \sin x) + e^x(2x + \sin x)' = e^x(2x + \sin x) + e^x(2 + \cos x) \] Hence, \( f'(x) = e^x(2x + \sin x + 2 + \cos x) \). 11. For \( y=\frac{4 x}{x^{2}+1} \), we use the quotient rule: \[ y' = \frac{(4)(x^2 + 1) - (4x)(2x)}{(x^2 + 1)^2} = \frac{4(x^2 + 1) - 8x^2}{(x^2 + 1)^2} \] This simplifies to \( y' = \frac{-4x^2 + 4}{(x^2 + 1)^2} \) or \( y' = \frac{4(1 - x^2)}{(x^2 + 1)^2} \). 12. For \( y=\frac{x-2}{2 x^{2}-\cos x} \), the quotient rule gives us: \[ y' = \frac{(1)(2x^2 - \cos x) - (x-2)(4x + \sin x)}{(2x^2 - \cos x)^2} \] After some simplification, this results in: \[ y' = \frac{(2x^2 - \cos x) - (4x^2 - 8 + (x-2)\sin x)}{(2x^2 - \cos x)^2} \]. 13. For \( f(x)=\sin 5x \), we use the chain rule: \[ f'(x) = \cos(5x) \cdot (5) = 5\cos(5x) \]. 14. For \( f(x)=\log 2x \), recall that \( \log 2x = \log 2 + \log x \), so: \[ f'(x) = 0 + \frac{1}{x} = \frac{1}{x} \]. 15. For \( f(x)=\left(x^{3}+2 x\right)^{27} \), we again utilize the chain rule: \[ f'(x) = 27\left(x^3 + 2x\right)^{26}(3x^2 + 2) \]. And there you go! Each derivative is calculated with precision!