Question
upstudy study bank question image url

4. Simplify the following expressions without using a calculator. a \( \frac{\sin \left(-160^{\circ}\right) \sin \left(x-180^{\circ}\right)}{\cos \left(360^{\circ}-x\right) \tan (360+x) \cos 110^{\circ}} \) b \( \sin \left(90^{\circ}-x\right) \cos \left(180^{\circ}-x\right)+\tan \left(180^{\circ}+x\right) \cos (-x) \sin \left(360^{\circ}-x\right) \) c \( \frac{\cos \left(90^{\circ}+x\right) \tan 150^{\circ}}{\sin \left(180^{\circ}-x\right) \cos \left(-330^{\circ}\right)} \) d \( \frac{\cos \left(-210^{\circ}\right) \cos 120^{\circ}}{\sin 120^{\circ}}+\frac{\sin 135^{\circ} \tan ^{2} 240^{\circ}}{\cos 405^{\circ}} \)

Ask by Wheeler Horton. in South Africa
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

a) \(-\tan(x) \cot(x+360)\) b) \(-1\) c) \(\frac{2}{3}\) d) \(\frac{7}{2}\)

Solution

Simplify the expression by following steps: - step0: Solution: \(\sin\left(90^{\circ}-x\right)\cos\left(180^{\circ}-x\right)+\tan\left(180^{\circ}+x\right)\cos\left(-x\right)\sin\left(360^{\circ}-x\right)\) - step1: Rewrite the expression: \(\cos\left(x\right)\cos\left(180^{\circ}-x\right)+\tan\left(180^{\circ}+x\right)\cos\left(-x\right)\sin\left(360^{\circ}-x\right)\) - step2: Rewrite the expression: \(\cos\left(x\right)\left(-\cos\left(x\right)\right)+\tan\left(180^{\circ}+x\right)\cos\left(-x\right)\sin\left(360^{\circ}-x\right)\) - step3: Rewrite the expression: \(\cos\left(x\right)\left(-\cos\left(x\right)\right)+\tan\left(x\right)\cos\left(-x\right)\sin\left(360^{\circ}-x\right)\) - step4: Transform the expression: \(\cos\left(x\right)\left(-\cos\left(x\right)\right)+\tan\left(x\right)\cos\left(x\right)\sin\left(360^{\circ}-x\right)\) - step5: Rewrite the expression: \(\cos\left(x\right)\left(-\cos\left(x\right)\right)+\tan\left(x\right)\cos\left(x\right)\left(-\sin\left(x\right)\right)\) - step6: Multiply the terms: \(-\cos^{2}\left(x\right)+\tan\left(x\right)\cos\left(x\right)\left(-\sin\left(x\right)\right)\) - step7: Multiply: \(-\cos^{2}\left(x\right)-\tan\left(x\right)\cos\left(x\right)\sin\left(x\right)\) - step8: Transform the expression: \(-\cos\left(x\right)\left(\cos\left(x\right)+\tan\left(x\right)\sin\left(x\right)\right)\) - step9: Transform the expression: \(-\cos\left(x\right)\times \frac{\cos^{2}\left(x\right)+\sin^{2}\left(x\right)}{\cos\left(x\right)}\) - step10: Reduce the fraction: \(-1\times \left(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\right)\) - step11: Multiply the terms: \(-\left(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\right)\) - step12: Calculate: \(-\cos^{2}\left(x\right)-\sin^{2}\left(x\right)\) - step13: Transform the expression: \(-\cos^{2}\left(x\right)-\left(1-\cos^{2}\left(x\right)\right)\) - step14: Calculate: \(-\cos^{2}\left(x\right)-1+\cos^{2}\left(x\right)\) - step15: Collect like terms: \(-1\) Calculate or simplify the expression \( \frac{\cos \left(-210^{\circ}\right) \cos 120^{\circ}}{\sin 120^{\circ}}+\frac{\sin 135^{\circ} \tan ^{2} 240^{\circ}}{\cos 405^{\circ}} \). Calculate the value by following steps: - step0: Calculate: \(\frac{\cos\left(-210^{\circ}\right)\cos\left(120^{\circ}\right)}{\sin\left(120^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(240^{\circ}\right)}{\cos\left(405^{\circ}\right)}\) - step1: Calculate: \(\frac{\cos\left(-210^{\circ}\right)\cos\left(120^{\circ}\right)}{\sin\left(120^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)}{\cos\left(405^{\circ}\right)}\) - step2: Calculate: \(\frac{\cos\left(210^{\circ}\right)\cos\left(120^{\circ}\right)}{\sin\left(120^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)}{\cos\left(405^{\circ}\right)}\) - step3: Multiply the terms: \(\frac{\frac{\sqrt{3}}{4}}{\sin\left(120^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)}{\cos\left(405^{\circ}\right)}\) - step4: Calculate: \(\frac{\frac{\sqrt{3}}{4}}{\sin\left(120^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)}{\cos\left(45^{\circ}\right)}\) - step5: Divide the terms: \(\frac{1}{2}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)}{\cos\left(45^{\circ}\right)}\) - step6: Reduce fractions to a common denominator: \(\frac{\cos\left(45^{\circ}\right)}{2\cos\left(45^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)\times 2}{\cos\left(45^{\circ}\right)\times 2}\) - step7: Reorder the terms: \(\frac{\cos\left(45^{\circ}\right)}{2\cos\left(45^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)\times 2}{2\cos\left(45^{\circ}\right)}\) - step8: Transform the expression: \(\frac{\cos\left(45^{\circ}\right)+\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)\times 2}{2\cos\left(45^{\circ}\right)}\) - step9: Multiply the terms: \(\frac{\cos\left(45^{\circ}\right)+\sqrt{2}\times \tan^{2}\left(60^{\circ}\right)}{2\cos\left(45^{\circ}\right)}\) - step10: Calculate the trigonometric value: \(\frac{\frac{\sqrt{2}}{2}+\sqrt{2}\times \tan^{2}\left(60^{\circ}\right)}{2\cos\left(45^{\circ}\right)}\) - step11: Rewrite the expression: \(\frac{\frac{\sqrt{2}+2\sqrt{2}\times \tan^{2}\left(60^{\circ}\right)}{2}}{2\cos\left(45^{\circ}\right)}\) - step12: Multiply by the reciprocal: \(\frac{\sqrt{2}+2\sqrt{2}\times \tan^{2}\left(60^{\circ}\right)}{2}\times \frac{1}{2\cos\left(45^{\circ}\right)}\) - step13: Multiply the terms: \(\frac{\sqrt{2}+2\sqrt{2}\times \tan^{2}\left(60^{\circ}\right)}{2\sqrt{2}}\) - step14: Factor: \(\frac{\sqrt{2}\times \left(1+2\tan^{2}\left(60^{\circ}\right)\right)}{2\sqrt{2}}\) - step15: Reduce the fraction: \(\frac{1+2\tan^{2}\left(60^{\circ}\right)}{2}\) - step16: Transform the expression: \(\frac{7}{2}\) Calculate or simplify the expression \( \frac{\cos \left(90^{\circ}+x\right) \tan 150^{\circ}}{\sin \left(180^{\circ}-x\right) \cos \left(-330^{\circ}\right)} \). Simplify the expression by following steps: - step0: Solution: \(\frac{\cos\left(90^{\circ}+x\right)\tan\left(150^{\circ}\right)}{\sin\left(180^{\circ}-x\right)\cos\left(-330^{\circ}\right)}\) - step1: Rewrite the expression: \(\frac{-\sin\left(x\right)\tan\left(150^{\circ}\right)}{\sin\left(180^{\circ}-x\right)\cos\left(-330^{\circ}\right)}\) - step2: Rewrite the expression: \(\frac{-\sin\left(x\right)\tan\left(150^{\circ}\right)}{\sin\left(x\right)\cos\left(-330^{\circ}\right)}\) - step3: Calculate: \(\frac{-\sin\left(x\right)\tan\left(150^{\circ}\right)}{\sin\left(x\right)\cos\left(330^{\circ}\right)}\) - step4: Multiply the terms: \(\frac{-\sin\left(x\right)\tan\left(150^{\circ}\right)}{\frac{\sqrt{3}}{2}\sin\left(x\right)}\) - step5: Reduce the fraction: \(-\frac{\sin\left(x\right)\tan\left(150^{\circ}\right)}{\frac{\sqrt{3}}{2}\sin\left(x\right)}\) - step6: Reduce the fraction: \(-\frac{\tan\left(150^{\circ}\right)}{\frac{\sqrt{3}}{2}}\) - step7: Divide the terms: \(-\left(-\frac{2\sqrt{3}}{3\sqrt{3}}\right)\) - step8: Calculate: \(\frac{2\sqrt{3}}{3\sqrt{3}}\) - step9: Reduce the fraction: \(\frac{2}{3}\) Calculate or simplify the expression \( \frac{\sin \left(-160^{\circ}\right) \sin \left(x-180^{\circ}\right)}{\cos \left(360^{\circ}-x\right) \tan (360+x) \cos 110^{\circ}} \). Simplify the expression by following steps: - step0: Solution: \(\frac{\sin\left(-160^{\circ}\right)\sin\left(x-180^{\circ}\right)}{\cos\left(360^{\circ}-x\right)\tan\left(360+x\right)\cos\left(110^{\circ}\right)}\) - step1: Calculate: \(\frac{-\sin\left(160^{\circ}\right)\sin\left(x-180^{\circ}\right)}{\cos\left(360^{\circ}-x\right)\tan\left(360+x\right)\cos\left(110^{\circ}\right)}\) - step2: Rewrite the expression: \(\frac{-\sin\left(160^{\circ}\right)\left(-\sin\left(x\right)\right)}{\cos\left(360^{\circ}-x\right)\tan\left(360+x\right)\cos\left(110^{\circ}\right)}\) - step3: Rewrite the expression: \(\frac{-\sin\left(160^{\circ}\right)\left(-\sin\left(x\right)\right)}{\cos\left(x\right)\tan\left(360+x\right)\cos\left(110^{\circ}\right)}\) - step4: Rewrite the expression: \(\frac{-\sin\left(160^{\circ}\right)\left(-\sin\left(x\right)\right)}{\cos\left(x\right)\tan\left(x+360\right)\cos\left(110^{\circ}\right)}\) - step5: Rewrite the expression: \(\frac{\sin\left(160^{\circ}\right)\sin\left(x\right)}{\cos\left(x\right)\tan\left(x+360\right)\cos\left(110^{\circ}\right)}\) - step6: Multiply the terms: \(\frac{\sin\left(160^{\circ}\right)\sin\left(x\right)}{-\cos\left(70^{\circ}\right)\cos\left(x\right)\tan\left(x+360\right)}\) - step7: Reduce the fraction: \(-\frac{\sin\left(160^{\circ}\right)\sin\left(x\right)}{\cos\left(70^{\circ}\right)\cos\left(x\right)\tan\left(x+360\right)}\) - step8: Reduce the fraction: \(-\frac{\sin\left(x\right)}{\cos\left(x\right)\tan\left(x+360\right)}\) - step9: Transform the expression: \(-\frac{\sin\left(x\right)\left(1-\tan\left(360\right)\tan\left(x\right)\right)}{\cos\left(x\right)\left(\tan\left(360\right)+\tan\left(x\right)\right)}\) - step10: Transform the expression: \(-\frac{\sin\left(x\right)\left(\cos\left(360\right)\cos\left(x\right)-\sin\left(360\right)\sin\left(x\right)\right)}{\cos\left(x\right)\left(\sin\left(360\right)\cos\left(x\right)+\cos\left(360\right)\sin\left(x\right)\right)}\) - step11: Rewrite the expression: \(-\frac{\sin\left(x\right)\cos\left(x+360\right)}{\cos\left(x\right)\sin\left(x+360\right)}\) - step12: Transform the expression: \(-\tan\left(x\right)\cot\left(x+360\right)\) Let's simplify each expression step by step. ### a) \[ \frac{\sin \left(-160^{\circ}\right) \sin \left(x-180^{\circ}\right)}{\cos \left(360^{\circ}-x\right) \tan (360+x) \cos 110^{\circ}} \] 1. **Simplify \(\sin(-160^{\circ})\)**: \[ \sin(-\theta) = -\sin(\theta) \implies \sin(-160^{\circ}) = -\sin(160^{\circ}) \] 2. **Simplify \(\sin(x-180^{\circ})\)**: \[ \sin(x-180^{\circ}) = -\sin(x) \] 3. **Simplify \(\cos(360^{\circ}-x)\)**: \[ \cos(360^{\circ}-x) = \cos(x) \] 4. **Simplify \(\tan(360+x)\)**: \[ \tan(360+x) = \tan(x) \] 5. **Combine everything**: \[ \frac{-\sin(160^{\circ})(-\sin(x))}{\cos(x) \tan(x) \cos(110^{\circ})} = \frac{\sin(160^{\circ} \sin(x)}{\cos(x) \tan(x) \cos(110^{\circ})} \] 6. **Final result**: \[ -\tan(x) \cot(x+360) \] ### b) \[ \sin \left(90^{\circ}-x\right) \cos \left(180^{\circ}-x\right)+\tan \left(180^{\circ}+x\right) \cos (-x) \sin \left(360^{\circ}-x\right) \] 1. **Simplify \(\sin(90^{\circ}-x)\)**: \[ \sin(90^{\circ}-x) = \cos(x) \] 2. **Simplify \(\cos(180^{\circ}-x)\)**: \[ \cos(180^{\circ}-x) = -\cos(x) \] 3. **Simplify \(\tan(180^{\circ}+x)\)**: \[ \tan(180^{\circ}+x) = \tan(x) \] 4. **Simplify \(\cos(-x)\)**: \[ \cos(-x) = \cos(x) \] 5. **Simplify \(\sin(360^{\circ}-x)\)**: \[ \sin(360^{\circ}-x) = -\sin(x) \] 6. **Combine everything**: \[ \cos(x)(-\cos(x)) + \tan(x)(\cos(x))(-\sin(x)) = -\cos^2(x) - \tan(x)\cos(x)\sin(x) \] 7. **Final result**: \[ -1 \] ### c) \[ \frac{\cos \left(90^{\circ}+x\right) \tan 150^{\circ}}{\sin \left(180^{\circ}-x\right) \cos \left(-330^{\circ}\right)} \] 1. **Simplify \(\cos(90^{\circ}+x)\)**: \[ \cos(90^{\circ}+x) = -\sin(x) \] 2. **Simplify \(\tan(150^{\circ})\)**: \[ \tan(150^{\circ}) = -\tan(30^{\circ}) = -\frac{1}{\sqrt{3}} \] 3. **Simplify \(\sin(180^{\circ}-x)\)**: \[ \sin(180^{\circ}-x) = \sin(x) \] 4. **Simplify \(\cos(-330^{\circ})\)**: \[ \cos(-330^{\circ}) = \cos(330^{\circ}) = \frac{\sqrt{3}}{2} \] 5. **Combine everything**: \[ \frac{-\sin(x)(-\frac{1}{\sqrt{3}})}{\sin(x)(\frac{\sqrt{3}}{2})} = \frac{\frac{\sin(x)}{\sqrt{3}}}{\sin(x)\frac{\sqrt{3}}{2}} = \frac{2}{3} \] ### d) \[ \frac{\cos \left(-210^{\circ}\right) \cos 120^{\circ}}{\sin 120^{\circ}}+\frac{\sin 135^{\circ} \tan ^{2} 240^{\circ}}{\cos 405^{\circ}} \] 1. **Simplify \(\cos(-210^{\circ})\)**: \[ \cos(-210^{\circ}) = \cos(210^{\circ}) = -\frac{\sqrt{3}}{2} \] 2. **Simplify \(\cos(120^{\circ})\)**: \[ \cos(120^{\circ}) = -\frac{1}{2} \] 3. **Simplify \(\sin(120^{\circ})\)**: \[ \sin(120^{\circ}) = \frac{\sqrt{3}}{2} \] 4. **Simplify \(\sin(135^{\circ})\)**: \[ \sin(135^{\circ}) = \frac{\sqrt{2}}{2} \] 5. **Simplify \(\tan(240^{\circ})\)**: \[ \tan(240^{\circ}) = \tan(60^{\circ}) = \sqrt{3} \implies \tan^2(240^{\circ}) = 3 \] 6. **Simplify \(\cos(405^{\circ})\)**: \[ \cos(405^{\circ}) = \cos(45^{\circ}) = \frac{\sqrt{2}}{2} \] 7. **Combine everything**: \[ \frac{-\frac{\sqrt{3}}{2} \cdot -\frac{1}{2}}{\frac{\sqrt{3}}{2}} + \frac{\frac{\sqrt{2}}{2} \cdot 3}{\frac{\sqrt{2}}{2}} = \frac{\frac{\sqrt{3}}{4}}{\frac{\sqrt{3}}{2}} + 3 = \frac{1}{2} + 3 = \frac{7}{2} \] ### Summary of Results: - a

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Let’s simplify each of these expressions step by step! **a**: First, we can use some identities and properties of trigonometric functions. For \(\sin(-\theta) = -\sin(\theta)\), we have \(\sin(-160^\circ) = -\sin(160^\circ)\). Next, \(\sin(x - 180^\circ) = -\sin(x)\), and \(\cos(360^\circ - x) = \cos x\). Since \(\tan(360 + x) = \tan x\), we replace these in the expression: \[ \frac{-\sin(160^\circ)(-\sin x)}{\cos x \tan x \cos 110^\circ} = \frac{\sin(160^\circ)\sin x}{\cos x \tan x \cos 110^\circ} \] Separating \(\tan x = \frac{\sin x}{\cos x}\) gives: \[ = \frac{\sin(160^\circ)}{\cos^2 x \cos 110^\circ} \] **b**: Using the co-function identity \(\sin(90^\circ - x) = \cos x\) gives us: \[ \cos x \cos(180^\circ - x) + \tan(180^\circ + x) \cos(-x) \sin(360^\circ - x) \] Knowing \(\cos(180^\circ - x) = -\cos x\) results in: \[ -\cos^2 x + (-\tan x)(\cos x)(\sin x) = -\cos^2 x - \sin^2 x = -1 \] **c**: We know \(\cos(90^\circ + x) = -\sin x\) and \(\tan(150^\circ) = -\frac{1}{\sqrt{3}}\): \[ \frac{-\sin x \cdot \left(-\frac{1}{\sqrt{3}}\right)}{\sin(180^\circ - x)\cos(-330^\circ)} = \frac{\sin x/\sqrt{3}}{\sin x \cos(30^\circ)} \] Since \(\cos(-330^\circ) = \cos(30^\circ) = \frac{\sqrt{3}}{2}\): \[ = \frac{1/\sqrt{3}}{\frac{\sqrt{3}}{2}} = \frac{2}{3} \] **d**: For \(\cos(-210^\circ) = \cos(210^\circ) = -\frac{\sqrt{3}}{2}\), and \(\cos(120^\circ) = -\frac{1}{2}\): \[ \frac{-\frac{\sqrt{3}}{2} \cdot -\frac{1}{2}}{\sin(120^\circ)} + \frac{\sin(135^\circ) \tan^2(240^\circ)}{\cos(405^\circ)} \] Since \(\sin(120^\circ) = \frac{\sqrt{3}}{2}\) yields: \[ \frac{\frac{\sqrt{3}}{4}}{\frac{\sqrt{3}}{2}} = \frac{1}{2} + \frac{\sin(135^\circ)(-\frac{1}{\sqrt{3}})^2}{\frac{\sqrt{3}}{2}} = \frac{1}{2} + \frac{\frac{\sqrt{2}}{2} \cdot \frac{1}{3}}{\frac{\sqrt{3}}{2}} = \frac{1}{2} + \frac{\sqrt{2}}{3\sqrt{3}} = \frac{1}{2} + \frac{\sqrt{6}}{18} \] All four are simplified! If you have any further clarifications, just let me know!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy