Pregunta
upstudy study bank question image url

4. Simplify the following expressions without using a calculator. a \( \frac{\sin \left(-160^{\circ}\right) \sin \left(x-180^{\circ}\right)}{\cos \left(360^{\circ}-x\right) \tan (360+x) \cos 110^{\circ}} \) b \( \sin \left(90^{\circ}-x\right) \cos \left(180^{\circ}-x\right)+\tan \left(180^{\circ}+x\right) \cos (-x) \sin \left(360^{\circ}-x\right) \) c \( \frac{\cos \left(90^{\circ}+x\right) \tan 150^{\circ}}{\sin \left(180^{\circ}-x\right) \cos \left(-330^{\circ}\right)} \) d \( \frac{\cos \left(-210^{\circ}\right) \cos 120^{\circ}}{\sin 120^{\circ}}+\frac{\sin 135^{\circ} \tan ^{2} 240^{\circ}}{\cos 405^{\circ}} \)

Ask by Wheeler Horton. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) \(-\tan(x) \cot(x+360)\) b) \(-1\) c) \(\frac{2}{3}\) d) \(\frac{7}{2}\)

Solución

Simplify the expression by following steps: - step0: Solution: \(\sin\left(90^{\circ}-x\right)\cos\left(180^{\circ}-x\right)+\tan\left(180^{\circ}+x\right)\cos\left(-x\right)\sin\left(360^{\circ}-x\right)\) - step1: Rewrite the expression: \(\cos\left(x\right)\cos\left(180^{\circ}-x\right)+\tan\left(180^{\circ}+x\right)\cos\left(-x\right)\sin\left(360^{\circ}-x\right)\) - step2: Rewrite the expression: \(\cos\left(x\right)\left(-\cos\left(x\right)\right)+\tan\left(180^{\circ}+x\right)\cos\left(-x\right)\sin\left(360^{\circ}-x\right)\) - step3: Rewrite the expression: \(\cos\left(x\right)\left(-\cos\left(x\right)\right)+\tan\left(x\right)\cos\left(-x\right)\sin\left(360^{\circ}-x\right)\) - step4: Transform the expression: \(\cos\left(x\right)\left(-\cos\left(x\right)\right)+\tan\left(x\right)\cos\left(x\right)\sin\left(360^{\circ}-x\right)\) - step5: Rewrite the expression: \(\cos\left(x\right)\left(-\cos\left(x\right)\right)+\tan\left(x\right)\cos\left(x\right)\left(-\sin\left(x\right)\right)\) - step6: Multiply the terms: \(-\cos^{2}\left(x\right)+\tan\left(x\right)\cos\left(x\right)\left(-\sin\left(x\right)\right)\) - step7: Multiply: \(-\cos^{2}\left(x\right)-\tan\left(x\right)\cos\left(x\right)\sin\left(x\right)\) - step8: Transform the expression: \(-\cos\left(x\right)\left(\cos\left(x\right)+\tan\left(x\right)\sin\left(x\right)\right)\) - step9: Transform the expression: \(-\cos\left(x\right)\times \frac{\cos^{2}\left(x\right)+\sin^{2}\left(x\right)}{\cos\left(x\right)}\) - step10: Reduce the fraction: \(-1\times \left(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\right)\) - step11: Multiply the terms: \(-\left(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\right)\) - step12: Calculate: \(-\cos^{2}\left(x\right)-\sin^{2}\left(x\right)\) - step13: Transform the expression: \(-\cos^{2}\left(x\right)-\left(1-\cos^{2}\left(x\right)\right)\) - step14: Calculate: \(-\cos^{2}\left(x\right)-1+\cos^{2}\left(x\right)\) - step15: Collect like terms: \(-1\) Calculate or simplify the expression \( \frac{\cos \left(-210^{\circ}\right) \cos 120^{\circ}}{\sin 120^{\circ}}+\frac{\sin 135^{\circ} \tan ^{2} 240^{\circ}}{\cos 405^{\circ}} \). Calculate the value by following steps: - step0: Calculate: \(\frac{\cos\left(-210^{\circ}\right)\cos\left(120^{\circ}\right)}{\sin\left(120^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(240^{\circ}\right)}{\cos\left(405^{\circ}\right)}\) - step1: Calculate: \(\frac{\cos\left(-210^{\circ}\right)\cos\left(120^{\circ}\right)}{\sin\left(120^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)}{\cos\left(405^{\circ}\right)}\) - step2: Calculate: \(\frac{\cos\left(210^{\circ}\right)\cos\left(120^{\circ}\right)}{\sin\left(120^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)}{\cos\left(405^{\circ}\right)}\) - step3: Multiply the terms: \(\frac{\frac{\sqrt{3}}{4}}{\sin\left(120^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)}{\cos\left(405^{\circ}\right)}\) - step4: Calculate: \(\frac{\frac{\sqrt{3}}{4}}{\sin\left(120^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)}{\cos\left(45^{\circ}\right)}\) - step5: Divide the terms: \(\frac{1}{2}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)}{\cos\left(45^{\circ}\right)}\) - step6: Reduce fractions to a common denominator: \(\frac{\cos\left(45^{\circ}\right)}{2\cos\left(45^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)\times 2}{\cos\left(45^{\circ}\right)\times 2}\) - step7: Reorder the terms: \(\frac{\cos\left(45^{\circ}\right)}{2\cos\left(45^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)\times 2}{2\cos\left(45^{\circ}\right)}\) - step8: Transform the expression: \(\frac{\cos\left(45^{\circ}\right)+\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)\times 2}{2\cos\left(45^{\circ}\right)}\) - step9: Multiply the terms: \(\frac{\cos\left(45^{\circ}\right)+\sqrt{2}\times \tan^{2}\left(60^{\circ}\right)}{2\cos\left(45^{\circ}\right)}\) - step10: Calculate the trigonometric value: \(\frac{\frac{\sqrt{2}}{2}+\sqrt{2}\times \tan^{2}\left(60^{\circ}\right)}{2\cos\left(45^{\circ}\right)}\) - step11: Rewrite the expression: \(\frac{\frac{\sqrt{2}+2\sqrt{2}\times \tan^{2}\left(60^{\circ}\right)}{2}}{2\cos\left(45^{\circ}\right)}\) - step12: Multiply by the reciprocal: \(\frac{\sqrt{2}+2\sqrt{2}\times \tan^{2}\left(60^{\circ}\right)}{2}\times \frac{1}{2\cos\left(45^{\circ}\right)}\) - step13: Multiply the terms: \(\frac{\sqrt{2}+2\sqrt{2}\times \tan^{2}\left(60^{\circ}\right)}{2\sqrt{2}}\) - step14: Factor: \(\frac{\sqrt{2}\times \left(1+2\tan^{2}\left(60^{\circ}\right)\right)}{2\sqrt{2}}\) - step15: Reduce the fraction: \(\frac{1+2\tan^{2}\left(60^{\circ}\right)}{2}\) - step16: Transform the expression: \(\frac{7}{2}\) Calculate or simplify the expression \( \frac{\cos \left(90^{\circ}+x\right) \tan 150^{\circ}}{\sin \left(180^{\circ}-x\right) \cos \left(-330^{\circ}\right)} \). Simplify the expression by following steps: - step0: Solution: \(\frac{\cos\left(90^{\circ}+x\right)\tan\left(150^{\circ}\right)}{\sin\left(180^{\circ}-x\right)\cos\left(-330^{\circ}\right)}\) - step1: Rewrite the expression: \(\frac{-\sin\left(x\right)\tan\left(150^{\circ}\right)}{\sin\left(180^{\circ}-x\right)\cos\left(-330^{\circ}\right)}\) - step2: Rewrite the expression: \(\frac{-\sin\left(x\right)\tan\left(150^{\circ}\right)}{\sin\left(x\right)\cos\left(-330^{\circ}\right)}\) - step3: Calculate: \(\frac{-\sin\left(x\right)\tan\left(150^{\circ}\right)}{\sin\left(x\right)\cos\left(330^{\circ}\right)}\) - step4: Multiply the terms: \(\frac{-\sin\left(x\right)\tan\left(150^{\circ}\right)}{\frac{\sqrt{3}}{2}\sin\left(x\right)}\) - step5: Reduce the fraction: \(-\frac{\sin\left(x\right)\tan\left(150^{\circ}\right)}{\frac{\sqrt{3}}{2}\sin\left(x\right)}\) - step6: Reduce the fraction: \(-\frac{\tan\left(150^{\circ}\right)}{\frac{\sqrt{3}}{2}}\) - step7: Divide the terms: \(-\left(-\frac{2\sqrt{3}}{3\sqrt{3}}\right)\) - step8: Calculate: \(\frac{2\sqrt{3}}{3\sqrt{3}}\) - step9: Reduce the fraction: \(\frac{2}{3}\) Calculate or simplify the expression \( \frac{\sin \left(-160^{\circ}\right) \sin \left(x-180^{\circ}\right)}{\cos \left(360^{\circ}-x\right) \tan (360+x) \cos 110^{\circ}} \). Simplify the expression by following steps: - step0: Solution: \(\frac{\sin\left(-160^{\circ}\right)\sin\left(x-180^{\circ}\right)}{\cos\left(360^{\circ}-x\right)\tan\left(360+x\right)\cos\left(110^{\circ}\right)}\) - step1: Calculate: \(\frac{-\sin\left(160^{\circ}\right)\sin\left(x-180^{\circ}\right)}{\cos\left(360^{\circ}-x\right)\tan\left(360+x\right)\cos\left(110^{\circ}\right)}\) - step2: Rewrite the expression: \(\frac{-\sin\left(160^{\circ}\right)\left(-\sin\left(x\right)\right)}{\cos\left(360^{\circ}-x\right)\tan\left(360+x\right)\cos\left(110^{\circ}\right)}\) - step3: Rewrite the expression: \(\frac{-\sin\left(160^{\circ}\right)\left(-\sin\left(x\right)\right)}{\cos\left(x\right)\tan\left(360+x\right)\cos\left(110^{\circ}\right)}\) - step4: Rewrite the expression: \(\frac{-\sin\left(160^{\circ}\right)\left(-\sin\left(x\right)\right)}{\cos\left(x\right)\tan\left(x+360\right)\cos\left(110^{\circ}\right)}\) - step5: Rewrite the expression: \(\frac{\sin\left(160^{\circ}\right)\sin\left(x\right)}{\cos\left(x\right)\tan\left(x+360\right)\cos\left(110^{\circ}\right)}\) - step6: Multiply the terms: \(\frac{\sin\left(160^{\circ}\right)\sin\left(x\right)}{-\cos\left(70^{\circ}\right)\cos\left(x\right)\tan\left(x+360\right)}\) - step7: Reduce the fraction: \(-\frac{\sin\left(160^{\circ}\right)\sin\left(x\right)}{\cos\left(70^{\circ}\right)\cos\left(x\right)\tan\left(x+360\right)}\) - step8: Reduce the fraction: \(-\frac{\sin\left(x\right)}{\cos\left(x\right)\tan\left(x+360\right)}\) - step9: Transform the expression: \(-\frac{\sin\left(x\right)\left(1-\tan\left(360\right)\tan\left(x\right)\right)}{\cos\left(x\right)\left(\tan\left(360\right)+\tan\left(x\right)\right)}\) - step10: Transform the expression: \(-\frac{\sin\left(x\right)\left(\cos\left(360\right)\cos\left(x\right)-\sin\left(360\right)\sin\left(x\right)\right)}{\cos\left(x\right)\left(\sin\left(360\right)\cos\left(x\right)+\cos\left(360\right)\sin\left(x\right)\right)}\) - step11: Rewrite the expression: \(-\frac{\sin\left(x\right)\cos\left(x+360\right)}{\cos\left(x\right)\sin\left(x+360\right)}\) - step12: Transform the expression: \(-\tan\left(x\right)\cot\left(x+360\right)\) Let's simplify each expression step by step. ### a) \[ \frac{\sin \left(-160^{\circ}\right) \sin \left(x-180^{\circ}\right)}{\cos \left(360^{\circ}-x\right) \tan (360+x) \cos 110^{\circ}} \] 1. **Simplify \(\sin(-160^{\circ})\)**: \[ \sin(-\theta) = -\sin(\theta) \implies \sin(-160^{\circ}) = -\sin(160^{\circ}) \] 2. **Simplify \(\sin(x-180^{\circ})\)**: \[ \sin(x-180^{\circ}) = -\sin(x) \] 3. **Simplify \(\cos(360^{\circ}-x)\)**: \[ \cos(360^{\circ}-x) = \cos(x) \] 4. **Simplify \(\tan(360+x)\)**: \[ \tan(360+x) = \tan(x) \] 5. **Combine everything**: \[ \frac{-\sin(160^{\circ})(-\sin(x))}{\cos(x) \tan(x) \cos(110^{\circ})} = \frac{\sin(160^{\circ} \sin(x)}{\cos(x) \tan(x) \cos(110^{\circ})} \] 6. **Final result**: \[ -\tan(x) \cot(x+360) \] ### b) \[ \sin \left(90^{\circ}-x\right) \cos \left(180^{\circ}-x\right)+\tan \left(180^{\circ}+x\right) \cos (-x) \sin \left(360^{\circ}-x\right) \] 1. **Simplify \(\sin(90^{\circ}-x)\)**: \[ \sin(90^{\circ}-x) = \cos(x) \] 2. **Simplify \(\cos(180^{\circ}-x)\)**: \[ \cos(180^{\circ}-x) = -\cos(x) \] 3. **Simplify \(\tan(180^{\circ}+x)\)**: \[ \tan(180^{\circ}+x) = \tan(x) \] 4. **Simplify \(\cos(-x)\)**: \[ \cos(-x) = \cos(x) \] 5. **Simplify \(\sin(360^{\circ}-x)\)**: \[ \sin(360^{\circ}-x) = -\sin(x) \] 6. **Combine everything**: \[ \cos(x)(-\cos(x)) + \tan(x)(\cos(x))(-\sin(x)) = -\cos^2(x) - \tan(x)\cos(x)\sin(x) \] 7. **Final result**: \[ -1 \] ### c) \[ \frac{\cos \left(90^{\circ}+x\right) \tan 150^{\circ}}{\sin \left(180^{\circ}-x\right) \cos \left(-330^{\circ}\right)} \] 1. **Simplify \(\cos(90^{\circ}+x)\)**: \[ \cos(90^{\circ}+x) = -\sin(x) \] 2. **Simplify \(\tan(150^{\circ})\)**: \[ \tan(150^{\circ}) = -\tan(30^{\circ}) = -\frac{1}{\sqrt{3}} \] 3. **Simplify \(\sin(180^{\circ}-x)\)**: \[ \sin(180^{\circ}-x) = \sin(x) \] 4. **Simplify \(\cos(-330^{\circ})\)**: \[ \cos(-330^{\circ}) = \cos(330^{\circ}) = \frac{\sqrt{3}}{2} \] 5. **Combine everything**: \[ \frac{-\sin(x)(-\frac{1}{\sqrt{3}})}{\sin(x)(\frac{\sqrt{3}}{2})} = \frac{\frac{\sin(x)}{\sqrt{3}}}{\sin(x)\frac{\sqrt{3}}{2}} = \frac{2}{3} \] ### d) \[ \frac{\cos \left(-210^{\circ}\right) \cos 120^{\circ}}{\sin 120^{\circ}}+\frac{\sin 135^{\circ} \tan ^{2} 240^{\circ}}{\cos 405^{\circ}} \] 1. **Simplify \(\cos(-210^{\circ})\)**: \[ \cos(-210^{\circ}) = \cos(210^{\circ}) = -\frac{\sqrt{3}}{2} \] 2. **Simplify \(\cos(120^{\circ})\)**: \[ \cos(120^{\circ}) = -\frac{1}{2} \] 3. **Simplify \(\sin(120^{\circ})\)**: \[ \sin(120^{\circ}) = \frac{\sqrt{3}}{2} \] 4. **Simplify \(\sin(135^{\circ})\)**: \[ \sin(135^{\circ}) = \frac{\sqrt{2}}{2} \] 5. **Simplify \(\tan(240^{\circ})\)**: \[ \tan(240^{\circ}) = \tan(60^{\circ}) = \sqrt{3} \implies \tan^2(240^{\circ}) = 3 \] 6. **Simplify \(\cos(405^{\circ})\)**: \[ \cos(405^{\circ}) = \cos(45^{\circ}) = \frac{\sqrt{2}}{2} \] 7. **Combine everything**: \[ \frac{-\frac{\sqrt{3}}{2} \cdot -\frac{1}{2}}{\frac{\sqrt{3}}{2}} + \frac{\frac{\sqrt{2}}{2} \cdot 3}{\frac{\sqrt{2}}{2}} = \frac{\frac{\sqrt{3}}{4}}{\frac{\sqrt{3}}{2}} + 3 = \frac{1}{2} + 3 = \frac{7}{2} \] ### Summary of Results: - a

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let’s simplify each of these expressions step by step! **a**: First, we can use some identities and properties of trigonometric functions. For \(\sin(-\theta) = -\sin(\theta)\), we have \(\sin(-160^\circ) = -\sin(160^\circ)\). Next, \(\sin(x - 180^\circ) = -\sin(x)\), and \(\cos(360^\circ - x) = \cos x\). Since \(\tan(360 + x) = \tan x\), we replace these in the expression: \[ \frac{-\sin(160^\circ)(-\sin x)}{\cos x \tan x \cos 110^\circ} = \frac{\sin(160^\circ)\sin x}{\cos x \tan x \cos 110^\circ} \] Separating \(\tan x = \frac{\sin x}{\cos x}\) gives: \[ = \frac{\sin(160^\circ)}{\cos^2 x \cos 110^\circ} \] **b**: Using the co-function identity \(\sin(90^\circ - x) = \cos x\) gives us: \[ \cos x \cos(180^\circ - x) + \tan(180^\circ + x) \cos(-x) \sin(360^\circ - x) \] Knowing \(\cos(180^\circ - x) = -\cos x\) results in: \[ -\cos^2 x + (-\tan x)(\cos x)(\sin x) = -\cos^2 x - \sin^2 x = -1 \] **c**: We know \(\cos(90^\circ + x) = -\sin x\) and \(\tan(150^\circ) = -\frac{1}{\sqrt{3}}\): \[ \frac{-\sin x \cdot \left(-\frac{1}{\sqrt{3}}\right)}{\sin(180^\circ - x)\cos(-330^\circ)} = \frac{\sin x/\sqrt{3}}{\sin x \cos(30^\circ)} \] Since \(\cos(-330^\circ) = \cos(30^\circ) = \frac{\sqrt{3}}{2}\): \[ = \frac{1/\sqrt{3}}{\frac{\sqrt{3}}{2}} = \frac{2}{3} \] **d**: For \(\cos(-210^\circ) = \cos(210^\circ) = -\frac{\sqrt{3}}{2}\), and \(\cos(120^\circ) = -\frac{1}{2}\): \[ \frac{-\frac{\sqrt{3}}{2} \cdot -\frac{1}{2}}{\sin(120^\circ)} + \frac{\sin(135^\circ) \tan^2(240^\circ)}{\cos(405^\circ)} \] Since \(\sin(120^\circ) = \frac{\sqrt{3}}{2}\) yields: \[ \frac{\frac{\sqrt{3}}{4}}{\frac{\sqrt{3}}{2}} = \frac{1}{2} + \frac{\sin(135^\circ)(-\frac{1}{\sqrt{3}})^2}{\frac{\sqrt{3}}{2}} = \frac{1}{2} + \frac{\frac{\sqrt{2}}{2} \cdot \frac{1}{3}}{\frac{\sqrt{3}}{2}} = \frac{1}{2} + \frac{\sqrt{2}}{3\sqrt{3}} = \frac{1}{2} + \frac{\sqrt{6}}{18} \] All four are simplified! If you have any further clarifications, just let me know!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad