Responder
a) \(-\tan(x) \cot(x+360)\)
b) \(-1\)
c) \(\frac{2}{3}\)
d) \(\frac{7}{2}\)
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\sin\left(90^{\circ}-x\right)\cos\left(180^{\circ}-x\right)+\tan\left(180^{\circ}+x\right)\cos\left(-x\right)\sin\left(360^{\circ}-x\right)\)
- step1: Rewrite the expression:
\(\cos\left(x\right)\cos\left(180^{\circ}-x\right)+\tan\left(180^{\circ}+x\right)\cos\left(-x\right)\sin\left(360^{\circ}-x\right)\)
- step2: Rewrite the expression:
\(\cos\left(x\right)\left(-\cos\left(x\right)\right)+\tan\left(180^{\circ}+x\right)\cos\left(-x\right)\sin\left(360^{\circ}-x\right)\)
- step3: Rewrite the expression:
\(\cos\left(x\right)\left(-\cos\left(x\right)\right)+\tan\left(x\right)\cos\left(-x\right)\sin\left(360^{\circ}-x\right)\)
- step4: Transform the expression:
\(\cos\left(x\right)\left(-\cos\left(x\right)\right)+\tan\left(x\right)\cos\left(x\right)\sin\left(360^{\circ}-x\right)\)
- step5: Rewrite the expression:
\(\cos\left(x\right)\left(-\cos\left(x\right)\right)+\tan\left(x\right)\cos\left(x\right)\left(-\sin\left(x\right)\right)\)
- step6: Multiply the terms:
\(-\cos^{2}\left(x\right)+\tan\left(x\right)\cos\left(x\right)\left(-\sin\left(x\right)\right)\)
- step7: Multiply:
\(-\cos^{2}\left(x\right)-\tan\left(x\right)\cos\left(x\right)\sin\left(x\right)\)
- step8: Transform the expression:
\(-\cos\left(x\right)\left(\cos\left(x\right)+\tan\left(x\right)\sin\left(x\right)\right)\)
- step9: Transform the expression:
\(-\cos\left(x\right)\times \frac{\cos^{2}\left(x\right)+\sin^{2}\left(x\right)}{\cos\left(x\right)}\)
- step10: Reduce the fraction:
\(-1\times \left(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\right)\)
- step11: Multiply the terms:
\(-\left(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\right)\)
- step12: Calculate:
\(-\cos^{2}\left(x\right)-\sin^{2}\left(x\right)\)
- step13: Transform the expression:
\(-\cos^{2}\left(x\right)-\left(1-\cos^{2}\left(x\right)\right)\)
- step14: Calculate:
\(-\cos^{2}\left(x\right)-1+\cos^{2}\left(x\right)\)
- step15: Collect like terms:
\(-1\)
Calculate or simplify the expression \( \frac{\cos \left(-210^{\circ}\right) \cos 120^{\circ}}{\sin 120^{\circ}}+\frac{\sin 135^{\circ} \tan ^{2} 240^{\circ}}{\cos 405^{\circ}} \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\cos\left(-210^{\circ}\right)\cos\left(120^{\circ}\right)}{\sin\left(120^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(240^{\circ}\right)}{\cos\left(405^{\circ}\right)}\)
- step1: Calculate:
\(\frac{\cos\left(-210^{\circ}\right)\cos\left(120^{\circ}\right)}{\sin\left(120^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)}{\cos\left(405^{\circ}\right)}\)
- step2: Calculate:
\(\frac{\cos\left(210^{\circ}\right)\cos\left(120^{\circ}\right)}{\sin\left(120^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)}{\cos\left(405^{\circ}\right)}\)
- step3: Multiply the terms:
\(\frac{\frac{\sqrt{3}}{4}}{\sin\left(120^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)}{\cos\left(405^{\circ}\right)}\)
- step4: Calculate:
\(\frac{\frac{\sqrt{3}}{4}}{\sin\left(120^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)}{\cos\left(45^{\circ}\right)}\)
- step5: Divide the terms:
\(\frac{1}{2}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)}{\cos\left(45^{\circ}\right)}\)
- step6: Reduce fractions to a common denominator:
\(\frac{\cos\left(45^{\circ}\right)}{2\cos\left(45^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)\times 2}{\cos\left(45^{\circ}\right)\times 2}\)
- step7: Reorder the terms:
\(\frac{\cos\left(45^{\circ}\right)}{2\cos\left(45^{\circ}\right)}+\frac{\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)\times 2}{2\cos\left(45^{\circ}\right)}\)
- step8: Transform the expression:
\(\frac{\cos\left(45^{\circ}\right)+\sin\left(135^{\circ}\right)\tan^{2}\left(60^{\circ}\right)\times 2}{2\cos\left(45^{\circ}\right)}\)
- step9: Multiply the terms:
\(\frac{\cos\left(45^{\circ}\right)+\sqrt{2}\times \tan^{2}\left(60^{\circ}\right)}{2\cos\left(45^{\circ}\right)}\)
- step10: Calculate the trigonometric value:
\(\frac{\frac{\sqrt{2}}{2}+\sqrt{2}\times \tan^{2}\left(60^{\circ}\right)}{2\cos\left(45^{\circ}\right)}\)
- step11: Rewrite the expression:
\(\frac{\frac{\sqrt{2}+2\sqrt{2}\times \tan^{2}\left(60^{\circ}\right)}{2}}{2\cos\left(45^{\circ}\right)}\)
- step12: Multiply by the reciprocal:
\(\frac{\sqrt{2}+2\sqrt{2}\times \tan^{2}\left(60^{\circ}\right)}{2}\times \frac{1}{2\cos\left(45^{\circ}\right)}\)
- step13: Multiply the terms:
\(\frac{\sqrt{2}+2\sqrt{2}\times \tan^{2}\left(60^{\circ}\right)}{2\sqrt{2}}\)
- step14: Factor:
\(\frac{\sqrt{2}\times \left(1+2\tan^{2}\left(60^{\circ}\right)\right)}{2\sqrt{2}}\)
- step15: Reduce the fraction:
\(\frac{1+2\tan^{2}\left(60^{\circ}\right)}{2}\)
- step16: Transform the expression:
\(\frac{7}{2}\)
Calculate or simplify the expression \( \frac{\cos \left(90^{\circ}+x\right) \tan 150^{\circ}}{\sin \left(180^{\circ}-x\right) \cos \left(-330^{\circ}\right)} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\cos\left(90^{\circ}+x\right)\tan\left(150^{\circ}\right)}{\sin\left(180^{\circ}-x\right)\cos\left(-330^{\circ}\right)}\)
- step1: Rewrite the expression:
\(\frac{-\sin\left(x\right)\tan\left(150^{\circ}\right)}{\sin\left(180^{\circ}-x\right)\cos\left(-330^{\circ}\right)}\)
- step2: Rewrite the expression:
\(\frac{-\sin\left(x\right)\tan\left(150^{\circ}\right)}{\sin\left(x\right)\cos\left(-330^{\circ}\right)}\)
- step3: Calculate:
\(\frac{-\sin\left(x\right)\tan\left(150^{\circ}\right)}{\sin\left(x\right)\cos\left(330^{\circ}\right)}\)
- step4: Multiply the terms:
\(\frac{-\sin\left(x\right)\tan\left(150^{\circ}\right)}{\frac{\sqrt{3}}{2}\sin\left(x\right)}\)
- step5: Reduce the fraction:
\(-\frac{\sin\left(x\right)\tan\left(150^{\circ}\right)}{\frac{\sqrt{3}}{2}\sin\left(x\right)}\)
- step6: Reduce the fraction:
\(-\frac{\tan\left(150^{\circ}\right)}{\frac{\sqrt{3}}{2}}\)
- step7: Divide the terms:
\(-\left(-\frac{2\sqrt{3}}{3\sqrt{3}}\right)\)
- step8: Calculate:
\(\frac{2\sqrt{3}}{3\sqrt{3}}\)
- step9: Reduce the fraction:
\(\frac{2}{3}\)
Calculate or simplify the expression \( \frac{\sin \left(-160^{\circ}\right) \sin \left(x-180^{\circ}\right)}{\cos \left(360^{\circ}-x\right) \tan (360+x) \cos 110^{\circ}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\sin\left(-160^{\circ}\right)\sin\left(x-180^{\circ}\right)}{\cos\left(360^{\circ}-x\right)\tan\left(360+x\right)\cos\left(110^{\circ}\right)}\)
- step1: Calculate:
\(\frac{-\sin\left(160^{\circ}\right)\sin\left(x-180^{\circ}\right)}{\cos\left(360^{\circ}-x\right)\tan\left(360+x\right)\cos\left(110^{\circ}\right)}\)
- step2: Rewrite the expression:
\(\frac{-\sin\left(160^{\circ}\right)\left(-\sin\left(x\right)\right)}{\cos\left(360^{\circ}-x\right)\tan\left(360+x\right)\cos\left(110^{\circ}\right)}\)
- step3: Rewrite the expression:
\(\frac{-\sin\left(160^{\circ}\right)\left(-\sin\left(x\right)\right)}{\cos\left(x\right)\tan\left(360+x\right)\cos\left(110^{\circ}\right)}\)
- step4: Rewrite the expression:
\(\frac{-\sin\left(160^{\circ}\right)\left(-\sin\left(x\right)\right)}{\cos\left(x\right)\tan\left(x+360\right)\cos\left(110^{\circ}\right)}\)
- step5: Rewrite the expression:
\(\frac{\sin\left(160^{\circ}\right)\sin\left(x\right)}{\cos\left(x\right)\tan\left(x+360\right)\cos\left(110^{\circ}\right)}\)
- step6: Multiply the terms:
\(\frac{\sin\left(160^{\circ}\right)\sin\left(x\right)}{-\cos\left(70^{\circ}\right)\cos\left(x\right)\tan\left(x+360\right)}\)
- step7: Reduce the fraction:
\(-\frac{\sin\left(160^{\circ}\right)\sin\left(x\right)}{\cos\left(70^{\circ}\right)\cos\left(x\right)\tan\left(x+360\right)}\)
- step8: Reduce the fraction:
\(-\frac{\sin\left(x\right)}{\cos\left(x\right)\tan\left(x+360\right)}\)
- step9: Transform the expression:
\(-\frac{\sin\left(x\right)\left(1-\tan\left(360\right)\tan\left(x\right)\right)}{\cos\left(x\right)\left(\tan\left(360\right)+\tan\left(x\right)\right)}\)
- step10: Transform the expression:
\(-\frac{\sin\left(x\right)\left(\cos\left(360\right)\cos\left(x\right)-\sin\left(360\right)\sin\left(x\right)\right)}{\cos\left(x\right)\left(\sin\left(360\right)\cos\left(x\right)+\cos\left(360\right)\sin\left(x\right)\right)}\)
- step11: Rewrite the expression:
\(-\frac{\sin\left(x\right)\cos\left(x+360\right)}{\cos\left(x\right)\sin\left(x+360\right)}\)
- step12: Transform the expression:
\(-\tan\left(x\right)\cot\left(x+360\right)\)
Let's simplify each expression step by step.
### a)
\[
\frac{\sin \left(-160^{\circ}\right) \sin \left(x-180^{\circ}\right)}{\cos \left(360^{\circ}-x\right) \tan (360+x) \cos 110^{\circ}}
\]
1. **Simplify \(\sin(-160^{\circ})\)**:
\[
\sin(-\theta) = -\sin(\theta) \implies \sin(-160^{\circ}) = -\sin(160^{\circ})
\]
2. **Simplify \(\sin(x-180^{\circ})\)**:
\[
\sin(x-180^{\circ}) = -\sin(x)
\]
3. **Simplify \(\cos(360^{\circ}-x)\)**:
\[
\cos(360^{\circ}-x) = \cos(x)
\]
4. **Simplify \(\tan(360+x)\)**:
\[
\tan(360+x) = \tan(x)
\]
5. **Combine everything**:
\[
\frac{-\sin(160^{\circ})(-\sin(x))}{\cos(x) \tan(x) \cos(110^{\circ})} = \frac{\sin(160^{\circ} \sin(x)}{\cos(x) \tan(x) \cos(110^{\circ})}
\]
6. **Final result**:
\[
-\tan(x) \cot(x+360)
\]
### b)
\[
\sin \left(90^{\circ}-x\right) \cos \left(180^{\circ}-x\right)+\tan \left(180^{\circ}+x\right) \cos (-x) \sin \left(360^{\circ}-x\right)
\]
1. **Simplify \(\sin(90^{\circ}-x)\)**:
\[
\sin(90^{\circ}-x) = \cos(x)
\]
2. **Simplify \(\cos(180^{\circ}-x)\)**:
\[
\cos(180^{\circ}-x) = -\cos(x)
\]
3. **Simplify \(\tan(180^{\circ}+x)\)**:
\[
\tan(180^{\circ}+x) = \tan(x)
\]
4. **Simplify \(\cos(-x)\)**:
\[
\cos(-x) = \cos(x)
\]
5. **Simplify \(\sin(360^{\circ}-x)\)**:
\[
\sin(360^{\circ}-x) = -\sin(x)
\]
6. **Combine everything**:
\[
\cos(x)(-\cos(x)) + \tan(x)(\cos(x))(-\sin(x)) = -\cos^2(x) - \tan(x)\cos(x)\sin(x)
\]
7. **Final result**:
\[
-1
\]
### c)
\[
\frac{\cos \left(90^{\circ}+x\right) \tan 150^{\circ}}{\sin \left(180^{\circ}-x\right) \cos \left(-330^{\circ}\right)}
\]
1. **Simplify \(\cos(90^{\circ}+x)\)**:
\[
\cos(90^{\circ}+x) = -\sin(x)
\]
2. **Simplify \(\tan(150^{\circ})\)**:
\[
\tan(150^{\circ}) = -\tan(30^{\circ}) = -\frac{1}{\sqrt{3}}
\]
3. **Simplify \(\sin(180^{\circ}-x)\)**:
\[
\sin(180^{\circ}-x) = \sin(x)
\]
4. **Simplify \(\cos(-330^{\circ})\)**:
\[
\cos(-330^{\circ}) = \cos(330^{\circ}) = \frac{\sqrt{3}}{2}
\]
5. **Combine everything**:
\[
\frac{-\sin(x)(-\frac{1}{\sqrt{3}})}{\sin(x)(\frac{\sqrt{3}}{2})} = \frac{\frac{\sin(x)}{\sqrt{3}}}{\sin(x)\frac{\sqrt{3}}{2}} = \frac{2}{3}
\]
### d)
\[
\frac{\cos \left(-210^{\circ}\right) \cos 120^{\circ}}{\sin 120^{\circ}}+\frac{\sin 135^{\circ} \tan ^{2} 240^{\circ}}{\cos 405^{\circ}}
\]
1. **Simplify \(\cos(-210^{\circ})\)**:
\[
\cos(-210^{\circ}) = \cos(210^{\circ}) = -\frac{\sqrt{3}}{2}
\]
2. **Simplify \(\cos(120^{\circ})\)**:
\[
\cos(120^{\circ}) = -\frac{1}{2}
\]
3. **Simplify \(\sin(120^{\circ})\)**:
\[
\sin(120^{\circ}) = \frac{\sqrt{3}}{2}
\]
4. **Simplify \(\sin(135^{\circ})\)**:
\[
\sin(135^{\circ}) = \frac{\sqrt{2}}{2}
\]
5. **Simplify \(\tan(240^{\circ})\)**:
\[
\tan(240^{\circ}) = \tan(60^{\circ}) = \sqrt{3} \implies \tan^2(240^{\circ}) = 3
\]
6. **Simplify \(\cos(405^{\circ})\)**:
\[
\cos(405^{\circ}) = \cos(45^{\circ}) = \frac{\sqrt{2}}{2}
\]
7. **Combine everything**:
\[
\frac{-\frac{\sqrt{3}}{2} \cdot -\frac{1}{2}}{\frac{\sqrt{3}}{2}} + \frac{\frac{\sqrt{2}}{2} \cdot 3}{\frac{\sqrt{2}}{2}} = \frac{\frac{\sqrt{3}}{4}}{\frac{\sqrt{3}}{2}} + 3 = \frac{1}{2} + 3 = \frac{7}{2}
\]
### Summary of Results:
- a
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución