Question
upstudy study bank question image url

2. Өрнектін мәнін табыңыз: \( \frac{a+2 b}{b} \), егер \( \frac{a}{b}=2 \). 3. Есептеңіз \( \operatorname{tg} \alpha \), егер \( \sin \alpha=\frac{5}{13}, \frac{\pi}{2}<\alpha<\pi \). 4. Ара қашықтығы 900 км екі каладан бір-біріне қарама-қарсы екі п тада кездескен. Бірінші пойыз екіншіден 1 сағ кеш шығып, екінші ылдамдығынан 5 км/сағ артык жылдамдыкпен жүрген. Әр пойызд быныз. ;. Геометриялык прогрессияда \( \mathrm{n}=6 \mathrm{q}=0,5 \mathrm{~b}_{\mathrm{n}}=3 \) екендігі белгілі. Пр. үшесін, алғашкы п мүшесінің косындысын табыңыз.

Ask by Greene Dickson. in Kazakhstan
Feb 18,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. Значение выражения \( \frac{a + 2b}{b} \) равно 4, так как \( \frac{a}{b} = 2 \). 2. \( \operatorname{tg} \alpha = -\frac{5}{12} \), так как \( \sin \alpha = \frac{5}{13} \) и \( \alpha \) находится во втором квадранте. 3. Скорость первого поезда \( v + 5 \) км/ч, а скорость второго поезда \( v \) км/ч. Без дополнительной информации невозможно определить конкретные значения скоростей. 4. Третий член прогрессии \( b_3 = 24 \), а сумма первых 6 членов \( S_6 = 189 \).

Solution

Alright, I need to solve these mathematical problems step by step. Let's tackle them one by one. **Problem 1:** Find the value of the expression \( \frac{a + 2b}{b} \) given that \( \frac{a}{b} = 2 \). First, I'll substitute the given ratio into the expression. Since \( \frac{a}{b} = 2 \), it means that \( a = 2b \). Plugging this into the expression: \[ \frac{a + 2b}{b} = \frac{2b + 2b}{b} = \frac{4b}{b} = 4 \] So, the value of the expression is 4. **Problem 2:** Find \( \operatorname{tg} \alpha \) given that \( \sin \alpha = \frac{5}{13} \) and \( \frac{\pi}{2} < \alpha < \pi \). First, I recall that \( \operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha} \). I already have \( \sin \alpha = \frac{5}{13} \). To find \( \cos \alpha \), I'll use the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] Plugging in the known value: \[ \left(\frac{5}{13}\right)^2 + \cos^2 \alpha = 1 \Rightarrow \frac{25}{169} + \cos^2 \alpha = 1 \Rightarrow \cos^2 \alpha = 1 - \frac{25}{169} = \frac{144}{169} \] Since \( \alpha \) is in the second quadrant where cosine is negative: \[ \cos \alpha = -\frac{12}{13} \] Now, calculating \( \operatorname{tg} \alpha \): \[ \operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{5}{13}}{-\frac{12}{13}} = -\frac{5}{12} \] So, \( \operatorname{tg} \alpha = -\frac{5}{12} \). **Problem 3:** Two trains are 900 km apart and moving towards each other. The first train leaves 1 hour before the second and travels at 5 km/h faster than the second train, which travels at 5 km/h. Find the speeds of both trains. Let's denote the speed of the second train as \( v \) km/h. Then, the speed of the first train is \( v + 5 \) km/h. Since the first train leaves 1 hour earlier, it travels for \( t + 1 \) hours, and the second train travels for \( t \) hours. The distance covered by the first train is: \[ \text{Distance}_1 = (v + 5)(t + 1) \] The distance covered by the second train is: \[ \text{Distance}_2 = v \times t \] Since the trains are moving towards each other, the sum of the distances they cover equals 900 km: \[ (v + 5)(t + 1) + v \times t = 900 \] Expanding the equation: \[ v t + 5 t + v + 5 + v t = 900 \Rightarrow 2 v t + 5 t + v + 5 = 900 \] This equation has two variables, \( v \) and \( t \), which makes it difficult to solve directly. To find a solution, I'll assume that the trains meet after a certain time \( t \). However, without additional information, there are infinitely many solutions depending on the value of \( t \). Therefore, more information is needed to determine the exact speeds of the trains. **Problem 4:** In a geometric progression, \( n = 6 \), \( q = 0.5 \), and \( b_n = 3 \). Find the third term and the sum of the first \( n \) terms. First, recall that the \( n \)-th term of a geometric progression is given by: \[ b_n = b_1 \times q^{n-1} \] Given \( b_n = 3 \), \( q = 0.5 \), and \( n = 6 \): \[ 3 = b_1 \times (0.5)^{5} \Rightarrow b_1 = \frac{3}{(0.5)^5} = \frac{3}{0.03125} = 96 \] So, the first term \( b_1 = 96 \). Next, the third term \( b_3 \) is: \[ b_3 = b_1 \times q^{2} = 96 \times (0.5)^2 = 96 \times 0.25 = 24 \] Now, the sum of the first \( n \) terms \( S_n \) in a geometric progression is: \[ S_n = b_1 \times \frac{1 - q^n}{1 - q} \] Plugging in the values: \[ S_6 = 96 \times \frac{1 - (0.5)^6}{1 - 0.5} = 96 \times \frac{1 - 0.015625}{0.5} = 96 \times \frac{0.984375}{0.5} = 96 \times 1.96875 = 189 \] So, the third term is 24, and the sum of the first 6 terms is 189.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Алдымен \( \frac{a+2b}{b} \) өрнегін қарастырып, \( \frac{a}{b}=2 \) мәнін пайдалана аламыз. \( a = 2b \) дегенді анықтағы соң, \( \frac{2b + 2b}{b} = \frac{4b}{b} = 4 \) нәтижесін береміз. Яғни, өрнектің мәні 4-ке тең. Енді \( \sin \alpha = \frac{5}{13} \) және \( \frac{\pi}{2} < \alpha < \pi \) аралығында \( \cos \alpha \)-ны табу керек. Тікбұрышты үшбұрышта \( \sin^2 \alpha + \cos^2 \alpha = 1 \) формуласын қолдансақ, \( \cos^2 \alpha = 1 - \left(\frac{5}{13}\right)^2 = \frac{169 - 25}{169} = \frac{144}{169} \). Содан \( \cos \alpha = -\frac{12}{13} \) (себебі кез келген градус уақыты үшін ол теріс). Осыдан кейін \( \operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{5/13}{-12/13} = -\frac{5}{12} \).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy