Question
upstudy study bank question image url

6.1 \( \frac{\sin 210^{\circ} \cos 300^{\circ} \tan 240^{\circ}}{\cos 120^{\circ} \tan 150^{\circ} \sin 330^{\circ}} \) 6.2 \( [\sin (-\theta)+\cos (360-\theta)]\left[\cos (90-\theta)+\frac{\sin \theta}{\tan \theta}\right] \) If \( \tan x=m+\frac{1}{m}, 90^{\circ} \leq x \leq 270^{\circ} \) and \( m^{2}+\frac{1}{m^{2}}=1 \) Calculate the value of \( x \) without the use of a calculator

Ask by Rojas Parry. in South Africa
Jan 23,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The value of \( x \) is \( 120^{\circ} \) or \( 240^{\circ} \).

Solution

Let's solve each problem step by step. --- ## **6.1** \[ \frac{\sin 210^{\circ} \cos 300^{\circ} \tan 240^{\circ}}{\cos 120^{\circ} \tan 150^{\circ} \sin 330^{\circ}} \] **Step-by-Step Solution:** 1. **Evaluate each trigonometric function:** - \(\sin 210^{\circ}\): \(210^{\circ} = 180^{\circ} + 30^{\circ}\), so \(\sin 210^{\circ} = -\sin 30^{\circ} = -\frac{1}{2}\). - \(\cos 300^{\circ}\): \(300^{\circ} = 360^{\circ} - 60^{\circ}\), so \(\cos 300^{\circ} = \cos 60^{\circ} = \frac{1}{2}\). - \(\tan 240^{\circ}\): \(240^{\circ} = 180^{\circ} + 60^{\circ}\), so \(\tan 240^{\circ} = \tan 60^{\circ} = \sqrt{3}\). - \(\cos 120^{\circ}\): \(120^{\circ} = 180^{\circ} - 60^{\circ}\), so \(\cos 120^{\circ} = -\cos 60^{\circ} = -\frac{1}{2}\). - \(\tan 150^{\circ}\): \(150^{\circ} = 180^{\circ} - 30^{\circ}\), so \(\tan 150^{\circ} = -\tan 30^{\circ} = -\frac{1}{\sqrt{3}}\). - \(\sin 330^{\circ}\): \(330^{\circ} = 360^{\circ} - 30^{\circ}\), so \(\sin 330^{\circ} = -\sin 30^{\circ} = -\frac{1}{2}\). 2. **Substitute the values into the expression:** \[ \frac{(-\frac{1}{2}) \cdot (\frac{1}{2}) \cdot \sqrt{3}}{(-\frac{1}{2}) \cdot (-\frac{1}{\sqrt{3}}) \cdot (-\frac{1}{2})} \] 3. **Simplify the numerator and the denominator:** - **Numerator:** \[ -\frac{1}{2} \times \frac{1}{2} \times \sqrt{3} = -\frac{\sqrt{3}}{4} \] - **Denominator:** \[ -\frac{1}{2} \times -\frac{1}{\sqrt{3}} \times -\frac{1}{2} = -\frac{1}{4\sqrt{3}} \] 4. **Compute the overall fraction:** \[ \frac{-\frac{\sqrt{3}}{4}}{-\frac{1}{4\sqrt{3}}} = \frac{\sqrt{3}}{1} \times \sqrt{3} = 3 \] **Answer:** \[ \boxed{3} \] --- ## **6.2** \[ [\sin (-\theta) + \cos (360^{\circ} - \theta)] \left[ \cos (90^{\circ} - \theta) + \frac{\sin \theta}{\tan \theta} \right] \] **Step-by-Step Solution:** 1. **Simplify each trigonometric function:** - \(\sin(-\theta) = -\sin \theta\) - \(\cos(360^{\circ} - \theta) = \cos \theta\) - \(\cos(90^{\circ} - \theta) = \sin \theta\) - \(\frac{\sin \theta}{\tan \theta}\): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \implies \frac{\sin \theta}{\tan \theta} = \frac{\sin \theta}{\frac{\sin \theta}{\cos \theta}} = \cos \theta \] 2. **Substitute the simplified forms back into the expression:** \[ [-\sin \theta + \cos \theta] \left[ \sin \theta + \cos \theta \right] \] 3. **Recognize the pattern:** This is of the form \((a + b)(a - b) = a^2 - b^2\). 4. **Apply the identity:** \[ (\cos \theta - \sin \theta)(\cos \theta + \sin \theta) = \cos^2 \theta - \sin^2 \theta \] 5. **Use the double-angle identity:** \[ \cos^2 \theta - \sin^2 \theta = \cos(2\theta) \] **Answer:** \[ \boxed{\cos 2\theta} \] --- ## **Calculating \(x\) Given:** \[ \tan x = m + \frac{1}{m}, \quad 90^{\circ} \leq x \leq 270^{\circ} \] \[ m^2 + \frac{1}{m^2} = 1 \] **Step-by-Step Solution:** 1. **Given:** \[ m^2 + \frac{1}{m^2} = 1 \] 2. **Let’s find \(\tan x\):** \[ \tan x = m + \frac{1}{m} \] Square both sides to relate with the given equation: \[ (\tan x)^2 = \left(m + \frac{1}{m}\right)^2 = m^2 + 2 + \frac{1}{m^2} \] Substitute the given \(m^2 + \frac{1}{m^2} = 1\): \[ (\tan x)^2 = 1 + 2 = 3 \implies \tan x = \pm\sqrt{3} \] 3. **Determine the possible values for \(x\) in the given interval:** - The interval \(90^{\circ} \leq x \leq 270^{\circ}\) spans the **2nd** and **3rd** quadrants. - **In the 2nd Quadrant (90° to 180°):** \(\tan x\) is **negative**. Thus, \(\tan x = -\sqrt{3}\). \[ x = 180^{\circ} - 60^{\circ} = 120^{\circ} \] - **In the 3rd Quadrant (180° to 270°):** \(\tan x\) is **positive**. Thus, \(\tan x = \sqrt{3}\). \[ x = 180^{\circ} + 60^{\circ} = 240^{\circ} \] **Answer:** \[ \boxed{120^{\circ} \text{ or } 240^{\circ}} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To delve into the first expression, it's fascinating to note that many trigonometric values relate to special angles. For instance, \(\sin 210^\circ\) is equivalent to \(-\frac{1}{2}\), \(\cos 300^\circ\) is \(\frac{1}{2}\), and \(\tan 240^\circ\) is \(\frac{1}{\sqrt{3}}\); all of which can become your new BFFs in simplifying the expression. Plug these values in systematically while remembering that \(\cos 120^\circ = -\frac{1}{2}\) and \(\tan 150^\circ = -\frac{1}{\sqrt{3}}\). Moving on to the second part of the question, we find relationships in trigonometric identities that bring a big smile! The term \(\sin(-\theta) = -\sin(\theta)\) and \(\cos(360-\theta) = \cos(\theta)\) simplifies the first bracket. For the second bracket, we recall that \(\cos(90-\theta) = \sin(\theta)\) and \(\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}\), leading us to an eye-opening transformation. Remember, playing with these identities can make your math dance! Now, onto combining and simplifying all these fun bits!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy