Pregunta
upstudy study bank question image url

6.1 \( \frac{\sin 210^{\circ} \cos 300^{\circ} \tan 240^{\circ}}{\cos 120^{\circ} \tan 150^{\circ} \sin 330^{\circ}} \) 6.2 \( [\sin (-\theta)+\cos (360-\theta)]\left[\cos (90-\theta)+\frac{\sin \theta}{\tan \theta}\right] \) If \( \tan x=m+\frac{1}{m}, 90^{\circ} \leq x \leq 270^{\circ} \) and \( m^{2}+\frac{1}{m^{2}}=1 \) Calculate the value of \( x \) without the use of a calculator

Ask by Rojas Parry. in South Africa
Jan 23,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The value of \( x \) is \( 120^{\circ} \) or \( 240^{\circ} \).

Solución

Let's solve each problem step by step. --- ## **6.1** \[ \frac{\sin 210^{\circ} \cos 300^{\circ} \tan 240^{\circ}}{\cos 120^{\circ} \tan 150^{\circ} \sin 330^{\circ}} \] **Step-by-Step Solution:** 1. **Evaluate each trigonometric function:** - \(\sin 210^{\circ}\): \(210^{\circ} = 180^{\circ} + 30^{\circ}\), so \(\sin 210^{\circ} = -\sin 30^{\circ} = -\frac{1}{2}\). - \(\cos 300^{\circ}\): \(300^{\circ} = 360^{\circ} - 60^{\circ}\), so \(\cos 300^{\circ} = \cos 60^{\circ} = \frac{1}{2}\). - \(\tan 240^{\circ}\): \(240^{\circ} = 180^{\circ} + 60^{\circ}\), so \(\tan 240^{\circ} = \tan 60^{\circ} = \sqrt{3}\). - \(\cos 120^{\circ}\): \(120^{\circ} = 180^{\circ} - 60^{\circ}\), so \(\cos 120^{\circ} = -\cos 60^{\circ} = -\frac{1}{2}\). - \(\tan 150^{\circ}\): \(150^{\circ} = 180^{\circ} - 30^{\circ}\), so \(\tan 150^{\circ} = -\tan 30^{\circ} = -\frac{1}{\sqrt{3}}\). - \(\sin 330^{\circ}\): \(330^{\circ} = 360^{\circ} - 30^{\circ}\), so \(\sin 330^{\circ} = -\sin 30^{\circ} = -\frac{1}{2}\). 2. **Substitute the values into the expression:** \[ \frac{(-\frac{1}{2}) \cdot (\frac{1}{2}) \cdot \sqrt{3}}{(-\frac{1}{2}) \cdot (-\frac{1}{\sqrt{3}}) \cdot (-\frac{1}{2})} \] 3. **Simplify the numerator and the denominator:** - **Numerator:** \[ -\frac{1}{2} \times \frac{1}{2} \times \sqrt{3} = -\frac{\sqrt{3}}{4} \] - **Denominator:** \[ -\frac{1}{2} \times -\frac{1}{\sqrt{3}} \times -\frac{1}{2} = -\frac{1}{4\sqrt{3}} \] 4. **Compute the overall fraction:** \[ \frac{-\frac{\sqrt{3}}{4}}{-\frac{1}{4\sqrt{3}}} = \frac{\sqrt{3}}{1} \times \sqrt{3} = 3 \] **Answer:** \[ \boxed{3} \] --- ## **6.2** \[ [\sin (-\theta) + \cos (360^{\circ} - \theta)] \left[ \cos (90^{\circ} - \theta) + \frac{\sin \theta}{\tan \theta} \right] \] **Step-by-Step Solution:** 1. **Simplify each trigonometric function:** - \(\sin(-\theta) = -\sin \theta\) - \(\cos(360^{\circ} - \theta) = \cos \theta\) - \(\cos(90^{\circ} - \theta) = \sin \theta\) - \(\frac{\sin \theta}{\tan \theta}\): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \implies \frac{\sin \theta}{\tan \theta} = \frac{\sin \theta}{\frac{\sin \theta}{\cos \theta}} = \cos \theta \] 2. **Substitute the simplified forms back into the expression:** \[ [-\sin \theta + \cos \theta] \left[ \sin \theta + \cos \theta \right] \] 3. **Recognize the pattern:** This is of the form \((a + b)(a - b) = a^2 - b^2\). 4. **Apply the identity:** \[ (\cos \theta - \sin \theta)(\cos \theta + \sin \theta) = \cos^2 \theta - \sin^2 \theta \] 5. **Use the double-angle identity:** \[ \cos^2 \theta - \sin^2 \theta = \cos(2\theta) \] **Answer:** \[ \boxed{\cos 2\theta} \] --- ## **Calculating \(x\) Given:** \[ \tan x = m + \frac{1}{m}, \quad 90^{\circ} \leq x \leq 270^{\circ} \] \[ m^2 + \frac{1}{m^2} = 1 \] **Step-by-Step Solution:** 1. **Given:** \[ m^2 + \frac{1}{m^2} = 1 \] 2. **Let’s find \(\tan x\):** \[ \tan x = m + \frac{1}{m} \] Square both sides to relate with the given equation: \[ (\tan x)^2 = \left(m + \frac{1}{m}\right)^2 = m^2 + 2 + \frac{1}{m^2} \] Substitute the given \(m^2 + \frac{1}{m^2} = 1\): \[ (\tan x)^2 = 1 + 2 = 3 \implies \tan x = \pm\sqrt{3} \] 3. **Determine the possible values for \(x\) in the given interval:** - The interval \(90^{\circ} \leq x \leq 270^{\circ}\) spans the **2nd** and **3rd** quadrants. - **In the 2nd Quadrant (90° to 180°):** \(\tan x\) is **negative**. Thus, \(\tan x = -\sqrt{3}\). \[ x = 180^{\circ} - 60^{\circ} = 120^{\circ} \] - **In the 3rd Quadrant (180° to 270°):** \(\tan x\) is **positive**. Thus, \(\tan x = \sqrt{3}\). \[ x = 180^{\circ} + 60^{\circ} = 240^{\circ} \] **Answer:** \[ \boxed{120^{\circ} \text{ or } 240^{\circ}} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To delve into the first expression, it's fascinating to note that many trigonometric values relate to special angles. For instance, \(\sin 210^\circ\) is equivalent to \(-\frac{1}{2}\), \(\cos 300^\circ\) is \(\frac{1}{2}\), and \(\tan 240^\circ\) is \(\frac{1}{\sqrt{3}}\); all of which can become your new BFFs in simplifying the expression. Plug these values in systematically while remembering that \(\cos 120^\circ = -\frac{1}{2}\) and \(\tan 150^\circ = -\frac{1}{\sqrt{3}}\). Moving on to the second part of the question, we find relationships in trigonometric identities that bring a big smile! The term \(\sin(-\theta) = -\sin(\theta)\) and \(\cos(360-\theta) = \cos(\theta)\) simplifies the first bracket. For the second bracket, we recall that \(\cos(90-\theta) = \sin(\theta)\) and \(\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}\), leading us to an eye-opening transformation. Remember, playing with these identities can make your math dance! Now, onto combining and simplifying all these fun bits!

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad