Question
upstudy study bank question image url

4) Resuelve las siguientes ecuaciones 1) \( \log x+\log 4=\log 1 \)

Ask by Grant Chavez. in Argentina
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La solución es \( x = 0.25 \).

Solution

Solve the equation \( \log(x)+\log(4)=\log(1) \). Solve the equation by following steps: - step0: Solve for \(x\): \(\log_{10}{\left(x\right)}+\log_{10}{\left(4\right)}=\log_{10}{\left(1\right)}\) - step1: Find the domain: \(\log_{10}{\left(x\right)}+\log_{10}{\left(4\right)}=\log_{10}{\left(1\right)},x>0\) - step2: Simplify: \(\log_{10}{\left(x\right)}+2\log_{10}{\left(2\right)}=0\) - step3: Move the constant to the right side: \(\log_{10}{\left(x\right)}=0-2\log_{10}{\left(2\right)}\) - step4: Remove 0: \(\log_{10}{\left(x\right)}=-2\log_{10}{\left(2\right)}\) - step5: Rewrite the logarithm: \(\log_{10}{\left(x\right)}=\log_{10}{\left(2^{-2}\right)}\) - step6: Rewrite the expression: \(x=2^{-2}\) - step7: Simplify: \(x=\frac{1}{4}\) - step8: Check if the solution is in the defined range: \(x=\frac{1}{4},x>0\) - step9: Find the intersection: \(x=\frac{1}{4}\) La solución de la ecuación \( \log x + \log 4 = \log 1 \) es \( x = \frac{1}{4} \) o \( x = 0.25 \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Para resolver la ecuación \( \log x+\log 4=\log 1 \), primero podemos aplicar la propiedad de los logaritmos que dice que \( \log a + \log b = \log(ab) \). Así que reescribimos la ecuación como \( \log(4x) = \log 1 \). Dado que \( \log 1 = 0 \), esto nos da \( \log(4x) = 0 \). Al deshacer el logaritmo, sabemos que si \( \log(4x) = 0 \), entonces \( 4x = 10^0 = 1 \). De aquí, despejamos \( x \) y tenemos \( x = \frac{1}{4} \). Por lo tanto, la solución es \( x = \frac{1}{4} \). ¡Fácil, ¿verdad?! Recuerda siempre uqe los logaritmos pueden ser tus amigos, pero hay que manejarlos con cuidado y conocer sus propiedades para que no te sorprendan en el camino.

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy