Question
upstudy study bank question image url

4 Risolvi il sistema di equazioni. \( \begin{array}{ll}\text { a) }\left\{\begin{array}{ll}x+3 y=9 & \text { b) }\left\{\begin{array}{l}x+2 y=9 \\ 2 x-3 y=0\end{array}\right. \\ x-2 y=1\end{array}\right. \\ {[x=3, y=2 ; x=5, y=}\end{array} \)

Ask by Lane Harper. in Italy
Feb 18,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Iscriviti al canale YouTube per vedere i video dettagliati delle soluzioni.

Solution

Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}x+2y=9\\2x-3y=0\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=9-2y\\2x-3y=0\end{array}\right.\) - step2: Substitute the value of \(x:\) \(2\left(9-2y\right)-3y=0\) - step3: Simplify: \(18-7y=0\) - step4: Move the constant to the right side: \(-7y=0-18\) - step5: Remove 0: \(-7y=-18\) - step6: Change the signs: \(7y=18\) - step7: Divide both sides: \(\frac{7y}{7}=\frac{18}{7}\) - step8: Divide the numbers: \(y=\frac{18}{7}\) - step9: Substitute the value of \(y:\) \(x=9-2\times \frac{18}{7}\) - step10: Calculate: \(x=\frac{27}{7}\) - step11: Calculate: \(\left\{ \begin{array}{l}x=\frac{27}{7}\\y=\frac{18}{7}\end{array}\right.\) - step12: Check the solution: \(\left\{ \begin{array}{l}x=\frac{27}{7}\\y=\frac{18}{7}\end{array}\right.\) - step13: Rewrite: \(\left(x,y\right) = \left(\frac{27}{7},\frac{18}{7}\right)\) Solve the system of equations \( x+3y=9; x-2y=1 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}x+3y=9\\x-2y=1\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=9-3y\\x-2y=1\end{array}\right.\) - step2: Substitute the value of \(x:\) \(9-3y-2y=1\) - step3: Subtract the terms: \(9-5y=1\) - step4: Move the constant to the right side: \(-5y=1-9\) - step5: Subtract the numbers: \(-5y=-8\) - step6: Change the signs: \(5y=8\) - step7: Divide both sides: \(\frac{5y}{5}=\frac{8}{5}\) - step8: Divide the numbers: \(y=\frac{8}{5}\) - step9: Substitute the value of \(y:\) \(x=9-3\times \frac{8}{5}\) - step10: Calculate: \(x=\frac{21}{5}\) - step11: Calculate: \(\left\{ \begin{array}{l}x=\frac{21}{5}\\y=\frac{8}{5}\end{array}\right.\) - step12: Check the solution: \(\left\{ \begin{array}{l}x=\frac{21}{5}\\y=\frac{8}{5}\end{array}\right.\) - step13: Rewrite: \(\left(x,y\right) = \left(\frac{21}{5},\frac{8}{5}\right)\) Abbiamo due sistemi di equazioni da risolvere. ### Sistema a) Le equazioni sono: 1. \( x + 3y = 9 \) 2. \( x - 2y = 1 \) Risolvendo il sistema, otteniamo: \[ (x,y) = \left(\frac{21}{5}, \frac{8}{5}\right) \quad \text{oppure} \quad (x,y) = (4.2, 1.6) \] ### Sistema b) Le equazioni sono: 1. \( x + 2y = 9 \) 2. \( 2x - 3y = 0 \) Risolvendo il sistema, otteniamo: \[ (x,y) = \left(\frac{27}{7}, \frac{18}{7}\right) \quad \text{oppure} \quad (x,y) = (3.\dot{8}5714\dot{2}, 2.\dot{5}7142\dot{8}) \] ### Risultati finali - **Sistema a)**: \( (x,y) = (4.2, 1.6) \) - **Sistema b)**: \( (x,y) = (3.\dot{8}5714\dot{2}, 2.\dot{5}7142\dot{8}) \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Per risolvere il sistema \( a) \left\{\begin{array}{ll} x + 3y = 9 \\ x - 2y = 1 \end{array}\right. \), puoi sostituire \( x \) dalla seconda equazione nella prima. Risolvendo otterrai \( y = 2 \) e sostituendo nuovamente otterrai \( x = 3 \). Quindi, \( (x, y) = (3, 2) \). Per il sistema \( b) \left\{\begin{array}{l} x + 2y = 9 \\ 2x - 3y = 0 \end{array}\right. \), puoi risolvere la prima equazione per \( x = 9 - 2y \) e sostituirlo nella seconda. Dopo aver semplificato, ottieni \( y = 3 \) e sostituendo tornerai a \( x = 3 \). Quindi, \( (x, y) = (3, 3) \).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy