Question

7. The random variable X has a probability density function \( \mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}P & ; 01) \)

Ask by Ruiz Mccoy. in Uganda
Jan 30,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( P = \frac{1}{4} \), Variance of \( X \) is \( \frac{479}{576} \), and \( P(X > 1) = \frac{3}{4} \).

Solution

Let's analyze the given probability density function (pdf) of the random variable \( X \): \[ f(x) = \begin{cases} P & \text{for } 0 < x < 2, \\ P(2x - 3) & \text{for } 2 < x < 3, \\ 0 & \text{otherwise}. \end{cases} \] ### (i) Finding the Value of \( P \) To ensure that \( f(x) \) is a valid pdf, the total area under the curve must be equal to 1: \[ \int_{-\infty}^{\infty} f(x) \, dx = 1. \] Calculating the integral over the defined intervals: \[ \int_0^2 P \, dx + \int_2^3 P(2x - 3) \, dx = 1. \] 1. **First Integral:** \[ \int_0^2 P \, dx = P \cdot (2 - 0) = 2P. \] 2. **Second Integral:** \[ \int_2^3 P(2x - 3) \, dx = P \left[ \int_2^3 2x \, dx - \int_2^3 3 \, dx \right] = P \left[ \left( x^2 \bigg|_2^3 \right) - 3(x \bigg|_2^3) \right] = P \left[ (9 - 4) - (9 - 6) \right] = P \cdot 2. \] Adding both integrals: \[ 2P + 2P = 4P = 1 \quad \Rightarrow \quad P = \frac{1}{4}. \] ### (ii) Calculating the Variance of \( X \) Variance is given by: \[ \text{Var}(X) = E[X^2] - (E[X])^2. \] **First, find \( E[X] \):** \[ E[X] = \int_0^2 x \cdot \frac{1}{4} \, dx + \int_2^3 x \cdot \frac{1}{4}(2x - 3) \, dx. \] 1. **First Expectation Integral:** \[ \frac{1}{4} \int_0^2 x \, dx = \frac{1}{4} \left[ \frac{x^2}{2} \bigg|_0^2 \right] = \frac{1}{4} \cdot 2 = \frac{1}{2}. \] 2. **Second Expectation Integral:** \[ \frac{1}{4} \int_2^3 x(2x - 3) \, dx = \frac{1}{4} \left[ \frac{2x^3}{3} - \frac{3x^2}{2} \bigg|_2^3 \right] = \frac{1}{4} \cdot \frac{31}{6} = \frac{31}{24}. \] So, \[ E[X] = \frac{1}{2} + \frac{31}{24} = \frac{43}{24}. \] **Next, find \( E[X^2] \):** \[ E[X^2] = \int_0^2 x^2 \cdot \frac{1}{4} \, dx + \int_2^3 x^2 \cdot \frac{1}{4}(2x - 3) \, dx. \] 1. **First \( E[X^2] \) Integral:** \[ \frac{1}{4} \int_0^2 x^2 \, dx = \frac{1}{4} \left[ \frac{x^3}{3} \bigg|_0^2 \right] = \frac{1}{4} \cdot \frac{8}{3} = \frac{2}{3}. \] 2. **Second \( E[X^2] \) Integral:** \[ \frac{1}{4} \int_2^3 x^2(2x - 3) \, dx = \frac{1}{4} \cdot \frac{81}{6} = \frac{97}{24}. \] So, \[ E[X^2] = \frac{97}{24}. \] **Finally, compute the variance:** \[ \text{Var}(X) = \frac{97}{24} - \left( \frac{43}{24} \right)^2 = \frac{97}{24} - \frac{1849}{576} = \frac{479}{576}. \] ### (iii) Calculating \( P(X > 1) \) \[ P(X > 1) = \int_1^2 \frac{1}{4} \, dx + \int_2^3 \frac{1}{4}(2x - 3) \, dx. \] 1. **First Probability Integral:** \[ \frac{1}{4} \int_1^2 dx = \frac{1}{4} \cdot 1 = \frac{1}{4}. \] 2. **Second Probability Integral:** \[ \frac{1}{4} \int_2^3 (2x - 3) \, dx = \frac{1}{4} \cdot 2 = \frac{1}{2}. \] Adding both probabilities: \[ P(X > 1) = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}. \] ### **Final Answers:** 1. **Value of \( P \):** \[ P = \frac{1}{4}. \] 2. **Variance of \( X \):** \[ \text{Var}(X) = \frac{479}{576}. \] 3. **Probability \( P(X > 1) \):** \[ P(X > 1) = \frac{3}{4}. \] **Answer Summary:** (i) \( P = \dfrac{1}{4} \); (ii) Variance of \( X \) is \( \dfrac{479}{576} \); (iii) \( \mathrm{P}(X > 1) = \dfrac{3}{4} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To solve the problem, we start by finding the value of \( P \). To determine \( P \), we need to ensure that the total area under the probability density function (PDF) is equal to 1. The PDF is defined over two intervals: \( (0, 2) \) and \( (2, 3) \). 1. **Calculate \( P \)**: \[ \int_{0}^{2} P \, dx + \int_{2}^{3} P(2x - 3) \, dx = 1 \] For the first integral: \[ \int_{0}^{2} P \, dx = P \times (2 - 0) = 2P \] For the second integral: \[ \int_{2}^{3} P(2x - 3) \, dx = P \left[ x^2 - 3x \right]_{2}^{3} = P \left( (3^2 - 3 \cdot 3) - (2^2 - 3 \cdot 2) \right) \] \[ = P \left( (9 - 9) - (4 - 6) \right) = P(0 + 2) = 2P \] So we have: \[ 2P + 2P = 1 \implies 4P = 1 \implies P = \frac{1}{4} \] 2. **Variance of \( X \)**: To calculate the variance, we first need to find the expected value \( E[X] \) and \( E[X^2] \). **Calculate \( E[X] \)**: \[ E[X] = \int_{0}^{2} x P \, dx + \int_{2}^{3} x P(2x - 3) \, dx \] \[ = \int_{0}^{2} x \cdot \frac{1}{4} \, dx + \int_{2}^{3} x \cdot \frac{1}{4}(2x - 3) \, dx \] For the first integral: \[ E[X]_{0 \to 2} = \frac{1}{4} \cdot \frac{x^2}{2} \bigg|_{0}^{2} = \frac{1}{4} \cdot \frac{4}{2} = \frac{1}{4} \cdot 2 = \frac{1}{2} \] For the second integral: \[ E[X]_{2 \to 3} = \frac{1}{4} \int_{2}^{3} x(2x - 3) \, dx = \frac{1}{4} \left[ \frac{2x^3}{3} - \frac{3x^2}{2} \right]_{2}^{3} \] \[ = \frac{1}{4} \left[ \left( \frac{2(27)}{3} - \frac{3(9)}{2} \right) - \left( \frac{2(8)}{3} - \frac{3(4)}{2} \right) \right] \] After simplifying, \( E[X] \) yields a certain value which should be calculated. Finally, the variance \( Var(X) = E[X^2] - (E[X])^2 \). 3. **Calculate \( P(X > 1) \)**: To find \( P(X > 1) \): \[ P(X > 1) = \int_{1}^{2} P \, dx + \int_{2}^{3} P(2x - 3) \, dx \] For \( 0 < x < 2 \): \[ = \int_{1}^{2} \frac{1}{4} \, dx = \frac{1}{4} \cdot (2 - 1) = \frac{1}{4} \] And for \( 2 < x < 3 \): \[ = \int_{2}^{3} \frac{1}{4}(2x - 3) \, dx \] Calculate this portion similarly as above, adding the two results together. Hence, we will end up having the answers: (i) \( P = \frac{1}{4} \) (ii) Variance \(

Related Questions

Latest Probability Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy