7. The random variable X has a probability density function
\( \mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}P & ; 01) \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To solve the problem, we start by finding the value of \( P \). To determine \( P \), we need to ensure that the total area under the probability density function (PDF) is equal to 1. The PDF is defined over two intervals: \( (0, 2) \) and \( (2, 3) \). 1. **Calculate \( P \)**: \[ \int_{0}^{2} P \, dx + \int_{2}^{3} P(2x - 3) \, dx = 1 \] For the first integral: \[ \int_{0}^{2} P \, dx = P \times (2 - 0) = 2P \] For the second integral: \[ \int_{2}^{3} P(2x - 3) \, dx = P \left[ x^2 - 3x \right]_{2}^{3} = P \left( (3^2 - 3 \cdot 3) - (2^2 - 3 \cdot 2) \right) \] \[ = P \left( (9 - 9) - (4 - 6) \right) = P(0 + 2) = 2P \] So we have: \[ 2P + 2P = 1 \implies 4P = 1 \implies P = \frac{1}{4} \] 2. **Variance of \( X \)**: To calculate the variance, we first need to find the expected value \( E[X] \) and \( E[X^2] \). **Calculate \( E[X] \)**: \[ E[X] = \int_{0}^{2} x P \, dx + \int_{2}^{3} x P(2x - 3) \, dx \] \[ = \int_{0}^{2} x \cdot \frac{1}{4} \, dx + \int_{2}^{3} x \cdot \frac{1}{4}(2x - 3) \, dx \] For the first integral: \[ E[X]_{0 \to 2} = \frac{1}{4} \cdot \frac{x^2}{2} \bigg|_{0}^{2} = \frac{1}{4} \cdot \frac{4}{2} = \frac{1}{4} \cdot 2 = \frac{1}{2} \] For the second integral: \[ E[X]_{2 \to 3} = \frac{1}{4} \int_{2}^{3} x(2x - 3) \, dx = \frac{1}{4} \left[ \frac{2x^3}{3} - \frac{3x^2}{2} \right]_{2}^{3} \] \[ = \frac{1}{4} \left[ \left( \frac{2(27)}{3} - \frac{3(9)}{2} \right) - \left( \frac{2(8)}{3} - \frac{3(4)}{2} \right) \right] \] After simplifying, \( E[X] \) yields a certain value which should be calculated. Finally, the variance \( Var(X) = E[X^2] - (E[X])^2 \). 3. **Calculate \( P(X > 1) \)**: To find \( P(X > 1) \): \[ P(X > 1) = \int_{1}^{2} P \, dx + \int_{2}^{3} P(2x - 3) \, dx \] For \( 0 < x < 2 \): \[ = \int_{1}^{2} \frac{1}{4} \, dx = \frac{1}{4} \cdot (2 - 1) = \frac{1}{4} \] And for \( 2 < x < 3 \): \[ = \int_{2}^{3} \frac{1}{4}(2x - 3) \, dx \] Calculate this portion similarly as above, adding the two results together. Hence, we will end up having the answers: (i) \( P = \frac{1}{4} \) (ii) Variance \(