Pregunta

7. The random variable X has a probability density function \( \mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}P & ; 01) \)

Ask by Ruiz Mccoy. in Uganda
Jan 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( P = \frac{1}{4} \), Variance of \( X \) is \( \frac{479}{576} \), and \( P(X > 1) = \frac{3}{4} \).

Solución

Let's analyze the given probability density function (pdf) of the random variable \( X \): \[ f(x) = \begin{cases} P & \text{for } 0 < x < 2, \\ P(2x - 3) & \text{for } 2 < x < 3, \\ 0 & \text{otherwise}. \end{cases} \] ### (i) Finding the Value of \( P \) To ensure that \( f(x) \) is a valid pdf, the total area under the curve must be equal to 1: \[ \int_{-\infty}^{\infty} f(x) \, dx = 1. \] Calculating the integral over the defined intervals: \[ \int_0^2 P \, dx + \int_2^3 P(2x - 3) \, dx = 1. \] 1. **First Integral:** \[ \int_0^2 P \, dx = P \cdot (2 - 0) = 2P. \] 2. **Second Integral:** \[ \int_2^3 P(2x - 3) \, dx = P \left[ \int_2^3 2x \, dx - \int_2^3 3 \, dx \right] = P \left[ \left( x^2 \bigg|_2^3 \right) - 3(x \bigg|_2^3) \right] = P \left[ (9 - 4) - (9 - 6) \right] = P \cdot 2. \] Adding both integrals: \[ 2P + 2P = 4P = 1 \quad \Rightarrow \quad P = \frac{1}{4}. \] ### (ii) Calculating the Variance of \( X \) Variance is given by: \[ \text{Var}(X) = E[X^2] - (E[X])^2. \] **First, find \( E[X] \):** \[ E[X] = \int_0^2 x \cdot \frac{1}{4} \, dx + \int_2^3 x \cdot \frac{1}{4}(2x - 3) \, dx. \] 1. **First Expectation Integral:** \[ \frac{1}{4} \int_0^2 x \, dx = \frac{1}{4} \left[ \frac{x^2}{2} \bigg|_0^2 \right] = \frac{1}{4} \cdot 2 = \frac{1}{2}. \] 2. **Second Expectation Integral:** \[ \frac{1}{4} \int_2^3 x(2x - 3) \, dx = \frac{1}{4} \left[ \frac{2x^3}{3} - \frac{3x^2}{2} \bigg|_2^3 \right] = \frac{1}{4} \cdot \frac{31}{6} = \frac{31}{24}. \] So, \[ E[X] = \frac{1}{2} + \frac{31}{24} = \frac{43}{24}. \] **Next, find \( E[X^2] \):** \[ E[X^2] = \int_0^2 x^2 \cdot \frac{1}{4} \, dx + \int_2^3 x^2 \cdot \frac{1}{4}(2x - 3) \, dx. \] 1. **First \( E[X^2] \) Integral:** \[ \frac{1}{4} \int_0^2 x^2 \, dx = \frac{1}{4} \left[ \frac{x^3}{3} \bigg|_0^2 \right] = \frac{1}{4} \cdot \frac{8}{3} = \frac{2}{3}. \] 2. **Second \( E[X^2] \) Integral:** \[ \frac{1}{4} \int_2^3 x^2(2x - 3) \, dx = \frac{1}{4} \cdot \frac{81}{6} = \frac{97}{24}. \] So, \[ E[X^2] = \frac{97}{24}. \] **Finally, compute the variance:** \[ \text{Var}(X) = \frac{97}{24} - \left( \frac{43}{24} \right)^2 = \frac{97}{24} - \frac{1849}{576} = \frac{479}{576}. \] ### (iii) Calculating \( P(X > 1) \) \[ P(X > 1) = \int_1^2 \frac{1}{4} \, dx + \int_2^3 \frac{1}{4}(2x - 3) \, dx. \] 1. **First Probability Integral:** \[ \frac{1}{4} \int_1^2 dx = \frac{1}{4} \cdot 1 = \frac{1}{4}. \] 2. **Second Probability Integral:** \[ \frac{1}{4} \int_2^3 (2x - 3) \, dx = \frac{1}{4} \cdot 2 = \frac{1}{2}. \] Adding both probabilities: \[ P(X > 1) = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}. \] ### **Final Answers:** 1. **Value of \( P \):** \[ P = \frac{1}{4}. \] 2. **Variance of \( X \):** \[ \text{Var}(X) = \frac{479}{576}. \] 3. **Probability \( P(X > 1) \):** \[ P(X > 1) = \frac{3}{4}. \] **Answer Summary:** (i) \( P = \dfrac{1}{4} \); (ii) Variance of \( X \) is \( \dfrac{479}{576} \); (iii) \( \mathrm{P}(X > 1) = \dfrac{3}{4} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the problem, we start by finding the value of \( P \). To determine \( P \), we need to ensure that the total area under the probability density function (PDF) is equal to 1. The PDF is defined over two intervals: \( (0, 2) \) and \( (2, 3) \). 1. **Calculate \( P \)**: \[ \int_{0}^{2} P \, dx + \int_{2}^{3} P(2x - 3) \, dx = 1 \] For the first integral: \[ \int_{0}^{2} P \, dx = P \times (2 - 0) = 2P \] For the second integral: \[ \int_{2}^{3} P(2x - 3) \, dx = P \left[ x^2 - 3x \right]_{2}^{3} = P \left( (3^2 - 3 \cdot 3) - (2^2 - 3 \cdot 2) \right) \] \[ = P \left( (9 - 9) - (4 - 6) \right) = P(0 + 2) = 2P \] So we have: \[ 2P + 2P = 1 \implies 4P = 1 \implies P = \frac{1}{4} \] 2. **Variance of \( X \)**: To calculate the variance, we first need to find the expected value \( E[X] \) and \( E[X^2] \). **Calculate \( E[X] \)**: \[ E[X] = \int_{0}^{2} x P \, dx + \int_{2}^{3} x P(2x - 3) \, dx \] \[ = \int_{0}^{2} x \cdot \frac{1}{4} \, dx + \int_{2}^{3} x \cdot \frac{1}{4}(2x - 3) \, dx \] For the first integral: \[ E[X]_{0 \to 2} = \frac{1}{4} \cdot \frac{x^2}{2} \bigg|_{0}^{2} = \frac{1}{4} \cdot \frac{4}{2} = \frac{1}{4} \cdot 2 = \frac{1}{2} \] For the second integral: \[ E[X]_{2 \to 3} = \frac{1}{4} \int_{2}^{3} x(2x - 3) \, dx = \frac{1}{4} \left[ \frac{2x^3}{3} - \frac{3x^2}{2} \right]_{2}^{3} \] \[ = \frac{1}{4} \left[ \left( \frac{2(27)}{3} - \frac{3(9)}{2} \right) - \left( \frac{2(8)}{3} - \frac{3(4)}{2} \right) \right] \] After simplifying, \( E[X] \) yields a certain value which should be calculated. Finally, the variance \( Var(X) = E[X^2] - (E[X])^2 \). 3. **Calculate \( P(X > 1) \)**: To find \( P(X > 1) \): \[ P(X > 1) = \int_{1}^{2} P \, dx + \int_{2}^{3} P(2x - 3) \, dx \] For \( 0 < x < 2 \): \[ = \int_{1}^{2} \frac{1}{4} \, dx = \frac{1}{4} \cdot (2 - 1) = \frac{1}{4} \] And for \( 2 < x < 3 \): \[ = \int_{2}^{3} \frac{1}{4}(2x - 3) \, dx \] Calculate this portion similarly as above, adding the two results together. Hence, we will end up having the answers: (i) \( P = \frac{1}{4} \) (ii) Variance \(

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad