Question
upstudy study bank question image url

Find the exact value of each of the following under the given conditions below. \[ \tan \alpha=-\frac{4}{3}, \frac{\pi}{2}<\alpha<\pi ; \cos \beta=\frac{\sqrt{3}}{2}, 0<\beta<\frac{\pi}{2} \] \( \begin{array}{llll}\text { (a) } \sin (\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta) & \text { (d) } \tan (\alpha-\beta)\end{array} \)

Ask by Gibson Bowman. in the United States
Feb 22,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\[ \begin{array}{llll} \text{(a) } \sin(\alpha + \beta) = \frac{4\sqrt{3} - 3}{10} \\ \text{(b) } \cos(\alpha + \beta) = -\frac{3\sqrt{3} + 4}{10} \\ \text{(c) } \sin(\alpha - \beta) = \frac{4\sqrt{3} + 3}{10} \\ \text{(d) } \tan(\alpha - \beta) = -\frac{4\sqrt{3} + 3}{3\sqrt{3} + 4} \end{array} \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Mind Expander

To find the exact values of \( \sin(\alpha + \beta) \), \( \cos(\alpha + \beta) \), \( \sin(\alpha - \beta) \), and \( \tan(\alpha - \beta) \) under the provided conditions, we'll use the sine and cosine addition formulas, along with the Pythagorean identity. Given: - \( \tan \alpha = -\frac{4}{3} \) which means in the second quadrant, where sine is positive and cosine is negative. - \( \cos \beta = \frac{\sqrt{3}}{2} \) which means \( \beta = \frac{\pi}{6} \) since \( 0 < \beta < \frac{\pi}{2} \). ### Step 1: Finding \( \sin \alpha \) and \( \cos \alpha \) From \( \tan \alpha = -\frac{4}{3} \), we can use: \[ \sin \alpha = -\frac{4}{\sqrt{(4^2)+(3^2)}} = -\frac{4}{5}, \quad \cos \alpha = -\frac{3}{\sqrt{(4^2)+(3^2)}} = -\frac{3}{5} \] Since \( \alpha \) is in the second quadrant, we take: \[ \sin \alpha = \frac{4}{5}, \quad \cos \alpha = -\frac{3}{5} \] ### Step 2: Finding \( \sin \beta \) Since \( \beta = \frac{\pi}{6} \): \[ \sin \beta = \frac{1}{2} \] ### Step 3: Calculating the expressions #### (a) \( \sin(\alpha + \beta) \) Using the sine addition formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] \[ = \left(\frac{4}{5}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(-\frac{3}{5}\right)\left(\frac{1}{2}\right) \] \[ = \frac{4\sqrt{3}}{10} - \frac{3}{10} = \frac{4\sqrt{3} - 3}{10} \] #### (b) \( \cos(\alpha + \beta) \) Using the cosine addition formula: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] \[ = \left(-\frac{3}{5}\right)\left(\frac{\sqrt{3}}{2}\right) - \left(\frac{4}{5}\right)\left(\frac{1}{2}\right) \] \[ = -\frac{3\sqrt{3}}{10} - \frac{4}{10} = -\frac{3\sqrt{3} + 4}{10} \] #### (c) \( \sin(\alpha - \beta) \) Using the sine subtraction formula: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] \[ = \left(\frac{4}{5}\right)\left(\frac{\sqrt{3}}{2}\right) - \left(-\frac{3}{5}\right)\left(\frac{1}{2}\right) \] \[ = \frac{4\sqrt{3}}{10} + \frac{3}{10} = \frac{4\sqrt{3} + 3}{10} \] #### (d) \( \tan(\alpha - \beta) \) Using the tangent subtraction formula: \[ \tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} \] We need \( \cos(\alpha - \beta) \): \[ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] \[ = \left(-\frac{3}{5}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{4}{5}\right)\left(\frac{1}{2}\right) \] \[ = -\frac{3\sqrt{3}}{10} + \frac{4}{10} = \frac{4 - 3\sqrt{3}}{10} \] Now compute

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy