Pregunta
upstudy study bank question image url

Find the exact value of each of the following under the given conditions below. \[ \tan \alpha=-\frac{4}{3}, \frac{\pi}{2}<\alpha<\pi ; \cos \beta=\frac{\sqrt{3}}{2}, 0<\beta<\frac{\pi}{2} \] \( \begin{array}{llll}\text { (a) } \sin (\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta) & \text { (d) } \tan (\alpha-\beta)\end{array} \)

Ask by Gibson Bowman. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ \begin{array}{llll} \text{(a) } \sin(\alpha + \beta) = \frac{4\sqrt{3} - 3}{10} \\ \text{(b) } \cos(\alpha + \beta) = -\frac{3\sqrt{3} + 4}{10} \\ \text{(c) } \sin(\alpha - \beta) = \frac{4\sqrt{3} + 3}{10} \\ \text{(d) } \tan(\alpha - \beta) = -\frac{4\sqrt{3} + 3}{3\sqrt{3} + 4} \end{array} \]

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

To find the exact values of \( \sin(\alpha + \beta) \), \( \cos(\alpha + \beta) \), \( \sin(\alpha - \beta) \), and \( \tan(\alpha - \beta) \) under the provided conditions, we'll use the sine and cosine addition formulas, along with the Pythagorean identity. Given: - \( \tan \alpha = -\frac{4}{3} \) which means in the second quadrant, where sine is positive and cosine is negative. - \( \cos \beta = \frac{\sqrt{3}}{2} \) which means \( \beta = \frac{\pi}{6} \) since \( 0 < \beta < \frac{\pi}{2} \). ### Step 1: Finding \( \sin \alpha \) and \( \cos \alpha \) From \( \tan \alpha = -\frac{4}{3} \), we can use: \[ \sin \alpha = -\frac{4}{\sqrt{(4^2)+(3^2)}} = -\frac{4}{5}, \quad \cos \alpha = -\frac{3}{\sqrt{(4^2)+(3^2)}} = -\frac{3}{5} \] Since \( \alpha \) is in the second quadrant, we take: \[ \sin \alpha = \frac{4}{5}, \quad \cos \alpha = -\frac{3}{5} \] ### Step 2: Finding \( \sin \beta \) Since \( \beta = \frac{\pi}{6} \): \[ \sin \beta = \frac{1}{2} \] ### Step 3: Calculating the expressions #### (a) \( \sin(\alpha + \beta) \) Using the sine addition formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] \[ = \left(\frac{4}{5}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(-\frac{3}{5}\right)\left(\frac{1}{2}\right) \] \[ = \frac{4\sqrt{3}}{10} - \frac{3}{10} = \frac{4\sqrt{3} - 3}{10} \] #### (b) \( \cos(\alpha + \beta) \) Using the cosine addition formula: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] \[ = \left(-\frac{3}{5}\right)\left(\frac{\sqrt{3}}{2}\right) - \left(\frac{4}{5}\right)\left(\frac{1}{2}\right) \] \[ = -\frac{3\sqrt{3}}{10} - \frac{4}{10} = -\frac{3\sqrt{3} + 4}{10} \] #### (c) \( \sin(\alpha - \beta) \) Using the sine subtraction formula: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] \[ = \left(\frac{4}{5}\right)\left(\frac{\sqrt{3}}{2}\right) - \left(-\frac{3}{5}\right)\left(\frac{1}{2}\right) \] \[ = \frac{4\sqrt{3}}{10} + \frac{3}{10} = \frac{4\sqrt{3} + 3}{10} \] #### (d) \( \tan(\alpha - \beta) \) Using the tangent subtraction formula: \[ \tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} \] We need \( \cos(\alpha - \beta) \): \[ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] \[ = \left(-\frac{3}{5}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{4}{5}\right)\left(\frac{1}{2}\right) \] \[ = -\frac{3\sqrt{3}}{10} + \frac{4}{10} = \frac{4 - 3\sqrt{3}}{10} \] Now compute

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad