Answer
Here are the solutions for each set of simultaneous equations:
a) \( y + 6x = 4 \) and \( y - x = -6 \):
\[
(x, y) = \left(\frac{10}{7}, -\frac{32}{7}\right)
\]
b) \( 2x - y = 8 \) and \( y = x^2 + 4x - 23 \):
\[
(x, y) = (-5, -18) \text{ and } (3, -2)
\]
c) \( y - x = 5 \) and \( 2x^2 + 5xy = -2y^2 \):
\[
(x, y) = \left(-\frac{10}{3}, \frac{5}{3}\right) \text{ and } \left(-\frac{5}{3}, \frac{10}{3}\right)
\]
d) \( y + x = 6 \) and \( 2^{x+y} = 256 \):
\[
\text{No solution}
\]
e) \( 2x - 3y = 2 \) and \( x^2 + 2xy - 2x - 4y = 0 \):
\[
(x, y) = \left(2, \frac{2}{3}\right) \text{ and } \left(\frac{4}{7}, -\frac{2}{7}\right)
\]
f) \( y - 2 = 2(x - 1)^2 \) and \( (x + 5)^2 + (y - 3)^2 = 49 \):
\[
(x, y) \approx (-0.818, 8.614) \text{ and } (1.952, 3.814)
\]
g) \( y - x = 2 \) and \( y + x = -9 \):
\[
(x, y) = \left(-\frac{11}{2}, -\frac{7}{2}\right)
\]
h) \( 5^{x - 2y - 1} = 1 \) and \( x^2 - 2y^2 = 8 \):
\[
(x, y) = \left(-1 + 3\sqrt{2}, \frac{-2 + 3\sqrt{2}}{2}\right) \text{ and } \left(-1 - 3\sqrt{2}, -\frac{2 + 3\sqrt{2}}{2}\right)
\]
These solutions provide the values of \( x \) and \( y \) for each pair of equations.
Solution
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y+x=6\\2^{x+y}=256\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=6-y\\2^{x+y}=256\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(2^{6-y+y}=256\)
- step3: Simplify:
\(64=256\)
- step4: Calculate:
\(\left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \end{array}\right.\)
- step5: Rewrite:
\((x, y) \in \varnothing\)
Solve the system of equations \( y-x=2; y+x=-9 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y-x=2\\y+x=-9\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=-2+y\\y+x=-9\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(y-2+y=-9\)
- step3: Add the terms:
\(2y-2=-9\)
- step4: Move the constant to the right side:
\(2y=-9+2\)
- step5: Add the numbers:
\(2y=-7\)
- step6: Divide both sides:
\(\frac{2y}{2}=\frac{-7}{2}\)
- step7: Divide the numbers:
\(y=-\frac{7}{2}\)
- step8: Substitute the value of \(y:\)
\(x=-2-\frac{7}{2}\)
- step9: Calculate:
\(x=-\frac{11}{2}\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=-\frac{11}{2}\\y=-\frac{7}{2}\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=-\frac{11}{2}\\y=-\frac{7}{2}\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(-\frac{11}{2},-\frac{7}{2}\right)\)
Solve the system of equations \( 5^{x-2 y-1}=1; x^{2}-2 y^{2}=8 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}5^{x-2y-1}=1\\x^{2}-2y^{2}=8\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=2y+1\\x^{2}-2y^{2}=8\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\left(2y+1\right)^{2}-2y^{2}=8\)
- step3: Simplify:
\(2y^{2}+4y+1=8\)
- step4: Move the expression to the left side:
\(2y^{2}+4y+1-8=0\)
- step5: Subtract the numbers:
\(2y^{2}+4y-7=0\)
- step6: Solve using the quadratic formula:
\(y=\frac{-4\pm \sqrt{4^{2}-4\times 2\left(-7\right)}}{2\times 2}\)
- step7: Simplify the expression:
\(y=\frac{-4\pm \sqrt{4^{2}-4\times 2\left(-7\right)}}{4}\)
- step8: Simplify the expression:
\(y=\frac{-4\pm \sqrt{72}}{4}\)
- step9: Simplify the expression:
\(y=\frac{-4\pm 6\sqrt{2}}{4}\)
- step10: Separate into possible cases:
\(\begin{align}&y=\frac{-4+6\sqrt{2}}{4}\\&y=\frac{-4-6\sqrt{2}}{4}\end{align}\)
- step11: Simplify the expression:
\(\begin{align}&y=\frac{-2+3\sqrt{2}}{2}\\&y=\frac{-4-6\sqrt{2}}{4}\end{align}\)
- step12: Simplify the expression:
\(\begin{align}&y=\frac{-2+3\sqrt{2}}{2}\\&y=-\frac{2+3\sqrt{2}}{2}\end{align}\)
- step13: Evaluate the logic:
\(y=\frac{-2+3\sqrt{2}}{2}\cup y=-\frac{2+3\sqrt{2}}{2}\)
- step14: Rearrange the terms:
\(\left\{ \begin{array}{l}x=2y+1\\y=\frac{-2+3\sqrt{2}}{2}\end{array}\right.\cup \left\{ \begin{array}{l}x=2y+1\\y=-\frac{2+3\sqrt{2}}{2}\end{array}\right.\)
- step15: Calculate:
\(\left\{ \begin{array}{l}x=-1+3\sqrt{2}\\y=\frac{-2+3\sqrt{2}}{2}\end{array}\right.\cup \left\{ \begin{array}{l}x=-1-3\sqrt{2}\\y=-\frac{2+3\sqrt{2}}{2}\end{array}\right.\)
- step16: Check the solution:
\(\left\{ \begin{array}{l}x=-1+3\sqrt{2}\\y=\frac{-2+3\sqrt{2}}{2}\end{array}\right.\cup \left\{ \begin{array}{l}x=-1-3\sqrt{2}\\y=-\frac{2+3\sqrt{2}}{2}\end{array}\right.\)
- step17: Rewrite:
\(\left(x,y\right) = \left(-1+3\sqrt{2},\frac{-2+3\sqrt{2}}{2}\right)\cup \left(x,y\right) = \left(-1-3\sqrt{2},-\frac{2+3\sqrt{2}}{2}\right)\)
Solve the system of equations \( y+6 x=4; y-x=-6 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y+6x=4\\y-x=-6\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}y=4-6x\\y-x=-6\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(4-6x-x=-6\)
- step3: Subtract the terms:
\(4-7x=-6\)
- step4: Move the constant to the right side:
\(-7x=-6-4\)
- step5: Subtract the numbers:
\(-7x=-10\)
- step6: Change the signs:
\(7x=10\)
- step7: Divide both sides:
\(\frac{7x}{7}=\frac{10}{7}\)
- step8: Divide the numbers:
\(x=\frac{10}{7}\)
- step9: Substitute the value of \(x:\)
\(y=4-6\times \frac{10}{7}\)
- step10: Calculate:
\(y=-\frac{32}{7}\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=\frac{10}{7}\\y=-\frac{32}{7}\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=\frac{10}{7}\\y=-\frac{32}{7}\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(\frac{10}{7},-\frac{32}{7}\right)\)
Solve the system of equations \( 2 x-y=8; y=x^{2}+4 x-23 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}2x-y=8\\y=x^{2}+4x-23\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(2x-\left(x^{2}+4x-23\right)=8\)
- step2: Simplify:
\(-2x-x^{2}+23=8\)
- step3: Move the expression to the left side:
\(-2x-x^{2}+23-8=0\)
- step4: Subtract the numbers:
\(-2x-x^{2}+15=0\)
- step5: Factor the expression:
\(\left(-x+3\right)\left(x+5\right)=0\)
- step6: Separate into possible cases:
\(\begin{align}&-x+3=0\\&x+5=0\end{align}\)
- step7: Solve the equation:
\(\begin{align}&x=3\\&x=-5\end{align}\)
- step8: Calculate:
\(x=3\cup x=-5\)
- step9: Rearrange the terms:
\(\left\{ \begin{array}{l}x=3\\y=x^{2}+4x-23\end{array}\right.\cup \left\{ \begin{array}{l}x=-5\\y=x^{2}+4x-23\end{array}\right.\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=3\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=-5\\y=-18\end{array}\right.\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=-5\\y=-18\end{array}\right.\cup \left\{ \begin{array}{l}x=3\\y=-2\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=-5\\y=-18\end{array}\right.\cup \left\{ \begin{array}{l}x=3\\y=-2\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(-5,-18\right)\cup \left(x,y\right) = \left(3,-2\right)\)
Solve the system of equations \( y-2=2(x-1)^{2}; (x+5)^{2}+(y-3)^{2}=49 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y-2=2\left(x-1\right)^{2}\\\left(x+5\right)^{2}+\left(y-3\right)^{2}=49\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}y=2x^{2}-4x+4\\\left(x+5\right)^{2}+\left(y-3\right)^{2}=49\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(\left(x+5\right)^{2}+\left(2x^{2}-4x+4-3\right)^{2}=49\)
- step3: Simplify:
\(21x^{2}+2x+26+4x^{4}-16x^{3}=49\)
- step4: Move the expression to the left side:
\(21x^{2}+2x+26+4x^{4}-16x^{3}-49=0\)
- step5: Subtract the numbers:
\(21x^{2}+2x-23+4x^{4}-16x^{3}=0\)
- step6: Calculate:
\(x\approx 1.952466\cup x\approx -0.818491\)
- step7: Rearrange the terms:
\(\left\{ \begin{array}{l}x\approx 1.952466\\y=2x^{2}-4x+4\end{array}\right.\cup \left\{ \begin{array}{l}x\approx -0.818491\\y=2x^{2}-4x+4\end{array}\right.\)
- step8: Calculate:
\(\left\{ \begin{array}{l}x\approx 1.952466\\y\approx 3.814382\end{array}\right.\cup \left\{ \begin{array}{l}x\approx -0.818491\\y\approx 8.613821\end{array}\right.\)
- step9: Calculate:
\(\left\{ \begin{array}{l}x\approx -0.818491\\y\approx 8.613821\end{array}\right.\cup \left\{ \begin{array}{l}x\approx 1.952466\\y\approx 3.814382\end{array}\right.\)
- step10: Check the solution:
\(\left\{ \begin{array}{l}x\approx -0.818491\\y\approx 8.613821\end{array}\right.\cup \left\{ \begin{array}{l}x\approx 1.952466\\y\approx 3.814382\end{array}\right.\)
- step11: Rewrite:
\(\left(x,y\right)\approx \left(-0.818491,8.613821\right)\cup \left(x,y\right)\approx \left(1.952466,3.814382\right)\)
Solve the system of equations \( 2 x-3 y=2; x^{2}+2 x y-2 x-4 y=0 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}2x-3y=2\\x^{2}+2xy-2x-4y=0\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=\frac{2+3y}{2}\\x^{2}+2xy-2x-4y=0\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\left(\frac{2+3y}{2}\right)^{2}+2\times \frac{2+3y}{2}\times y-2\times \frac{2+3y}{2}-4y=0\)
- step3: Simplify:
\(-1-2y+\frac{21}{4}y^{2}=0\)
- step4: Factor the expression:
\(\frac{1}{4}\left(-2+3y\right)\left(2+7y\right)=0\)
- step5: Divide the terms:
\(\left(-2+3y\right)\left(2+7y\right)=0\)
- step6: Separate into possible cases:
\(\begin{align}&-2+3y=0\\&2+7y=0\end{align}\)
- step7: Solve the equation:
\(\begin{align}&y=\frac{2}{3}\\&y=-\frac{2}{7}\end{align}\)
- step8: Calculate:
\(y=\frac{2}{3}\cup y=-\frac{2}{7}\)
- step9: Rearrange the terms:
\(\left\{ \begin{array}{l}x=\frac{2+3y}{2}\\y=\frac{2}{3}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2+3y}{2}\\y=-\frac{2}{7}\end{array}\right.\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=2\\y=\frac{2}{3}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{4}{7}\\y=-\frac{2}{7}\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=2\\y=\frac{2}{3}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{4}{7}\\y=-\frac{2}{7}\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(2,\frac{2}{3}\right)\cup \left(x,y\right) = \left(\frac{4}{7},-\frac{2}{7}\right)\)
Solve the system of equations \( y-x=5; 2 x^{2}+5 x y=-2 y^{2} \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y-x=5\\2x^{2}+5xy=-2y^{2}\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=-5+y\\2x^{2}+5xy=-2y^{2}\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(2\left(-5+y\right)^{2}+5\left(-5+y\right)y=-2y^{2}\)
- step3: Simplify:
\(50-45y+7y^{2}=-2y^{2}\)
- step4: Move the expression to the left side:
\(50-45y+7y^{2}-\left(-2y^{2}\right)=0\)
- step5: Calculate:
\(50-45y+9y^{2}=0\)
- step6: Factor the expression:
\(\left(10-3y\right)\left(5-3y\right)=0\)
- step7: Separate into possible cases:
\(\begin{align}&10-3y=0\\&5-3y=0\end{align}\)
- step8: Solve the equation:
\(\begin{align}&y=\frac{10}{3}\\&y=\frac{5}{3}\end{align}\)
- step9: Calculate:
\(y=\frac{10}{3}\cup y=\frac{5}{3}\)
- step10: Rearrange the terms:
\(\left\{ \begin{array}{l}x=-5+y\\y=\frac{10}{3}\end{array}\right.\cup \left\{ \begin{array}{l}x=-5+y\\y=\frac{5}{3}\end{array}\right.\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=-\frac{5}{3}\\y=\frac{10}{3}\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{10}{3}\\y=\frac{5}{3}\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=-\frac{10}{3}\\y=\frac{5}{3}\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{5}{3}\\y=\frac{10}{3}\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=-\frac{10}{3}\\y=\frac{5}{3}\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{5}{3}\\y=\frac{10}{3}\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(-\frac{10}{3},\frac{5}{3}\right)\cup \left(x,y\right) = \left(-\frac{5}{3},\frac{10}{3}\right)\)
Here are the solutions for each of the simultaneous equations provided:
### a)
Equations:
1. \( y + 6x = 4 \)
2. \( y - x = -6 \)
**Solution:**
\[
(x,y) = \left(\frac{10}{7}, -\frac{32}{7}\right)
\]
### b)
Equations:
1. \( 2x - y = 8 \)
2. \( y = x^2 + 4x - 23 \)
**Solution:**
\[
(x,y) = (-5,-18) \cup (x,y) = (3,-2)
\]
### c)
Equations:
1. \( y - x = 5 \)
2. \( 2x^2 + 5xy = -2y^2 \)
**Solution:**
\[
(x,y) = \left(-\frac{10}{3}, \frac{5}{3}\right) \cup (x,y) = \left(-\frac{5}{3}, \frac{10}{3}\right)
\]
### d)
Equations:
1. \( y + x = 6 \)
2. \( 2^{x+y} = 256 \)
**Solution:**
\[
(x, y) \in \varnothing \quad \text{(No solution)}
\]
### e)
Equations:
1. \( 2x - 3y = 2 \)
2. \( x^2 + 2xy - 2x - 4y = 0 \)
**Solution:**
\[
(x,y) = (2,\frac{2}{3}) \cup (x,y) = \left(\frac{4}{7}, -\frac{2}{7}\right)
\]
### f)
Equations:
1. \( y - 2 = 2(x - 1)^2 \)
2. \( (x + 5)^2 + (y - 3)^2 = 49 \)
**Solution:**
\[
(x,y) \approx (-0.818491, 8.613821) \cup (x,y) \approx (1.952466, 3.814382)
\]
### g)
Equations:
1. \( y - x = 2 \)
2. \( y + x = -9 \)
**Solution:**
\[
(x,y) = \left(-\frac{11}{2}, -\frac{7}{2}\right)
\]
### h)
Equations:
1. \( 5^{x - 2y - 1} = 1 \)
2. \( x^2 - 2y^2 = 8 \)
**Solution:**
\[
(x,y) = \left(-1 + 3\sqrt{2}, \frac{-2 + 3\sqrt{2}}{2}\right) \cup (x,y) = \left(-1 - 3\sqrt{2}, -\frac{2 + 3\sqrt{2}}{2}\right)
\]
These solutions provide the values of \( x \) and \( y \) for each pair of equations. If you need further clarification or additional problems solved, feel free to ask!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution