Question
upstudy study bank question image url

5. \( \frac{x^{2}-x}{x^{2}-2 x-3} \div \frac{x^{2}-4 x+3}{1-x^{2}} \)

Ask by Chan Washington. in South Africa
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The simplified form of the expression is \( \frac{x - x^{2}}{x^{2} - 6x + 9} \).

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{\frac{\left(x^{2}-x\right)}{\left(x^{2}-2x-3\right)}\times \left(1-x^{2}\right)}{\left(x^{2}-4x+3\right)}\) - step1: Remove the parentheses: \(\frac{\frac{x^{2}-x}{x^{2}-2x-3}\times \left(1-x^{2}\right)}{x^{2}-4x+3}\) - step2: Multiply the terms: \(\frac{\frac{\left(x^{2}-x\right)\left(1-x\right)}{x-3}}{x^{2}-4x+3}\) - step3: Multiply by the reciprocal: \(\frac{\left(x^{2}-x\right)\left(1-x\right)}{x-3}\times \frac{1}{x^{2}-4x+3}\) - step4: Rewrite the expression: \(\frac{x\left(x-1\right)\left(1-x\right)}{x-3}\times \frac{1}{\left(x-1\right)\left(x-3\right)}\) - step5: Reduce the fraction: \(\frac{x\left(1-x\right)}{x-3}\times \frac{1}{x-3}\) - step6: Multiply the terms: \(\frac{x\left(1-x\right)}{\left(x-3\right)\left(x-3\right)}\) - step7: Multiply the terms: \(\frac{x\left(1-x\right)}{\left(x-3\right)^{2}}\) - step8: Multiply the terms: \(\frac{x-x^{2}}{x^{2}-6x+9}\) To solve the expression \[ \frac{x^{2}-x}{x^{2}-2x-3} \div \frac{x^{2}-4x+3}{1-x^{2}}, \] we can rewrite the division as multiplication by the reciprocal: \[ \frac{x^{2}-x}{x^{2}-2x-3} \times \frac{1-x^{2}}{x^{2}-4x+3}. \] Now, let's simplify each part step by step. 1. **Factor the expressions:** - \(x^2 - x = x(x - 1)\) - \(x^2 - 2x - 3 = (x - 3)(x + 1)\) - \(1 - x^2 = -(x^2 - 1) = -(x - 1)(x + 1)\) - \(x^2 - 4x + 3 = (x - 3)(x - 1)\) 2. **Substituting the factored forms into the expression:** \[ \frac{x(x - 1)}{(x - 3)(x + 1)} \times \frac{-(x - 1)(x + 1)}{(x - 3)(x - 1)}. \] 3. **Combine the fractions:** \[ \frac{x(x - 1)(-(x - 1)(x + 1))}{(x - 3)(x + 1)(x - 3)(x - 1)}. \] 4. **Cancel out common factors:** - The \((x - 1)\) in the numerator and denominator cancels out. - The \((x + 1)\) in the numerator and denominator cancels out. After canceling, we are left with: \[ \frac{-x(x - 1)}{(x - 3)(x - 3)} = \frac{-x(x - 1)}{(x - 3)^2}. \] Thus, the simplified form of the original expression is: \[ \frac{x - x^{2}}{x^{2} - 6x + 9}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To simplify \( \frac{x^{2}-x}{x^{2}-2 x-3} \div \frac{x^{2}-4 x+3}{1-x^{2}} \), we first rewrite the division as multiplication by the reciprocal: \[ \frac{x^{2}-x}{x^{2}-2 x-3} \cdot \frac{1-x^{2}}{x^{2}-4 x+3} \] Next, we'll factor each polynomial: 1. **Numerator of the first fraction**: \( x^{2}-x = x(x-1) \) 2. **Denominator of the first fraction**: \( x^{2}-2x-3 = (x-3)(x+1) \) 3. **Numerator of the second fraction (reciprocal)**: \( 1-x^{2} = -(x^{2}-1) = -(x-1)(x+1) \) 4. **Denominator of the second fraction**: \( x^{2}-4x+3 = (x-3)(x-1) \) Now substituting the factored forms into our expression: \[ \frac{x(x-1)}{(x-3)(x+1)} \cdot \frac{-(x-1)(x+1)}{(x-3)(x-1)} \] Now, we can simplify: Cancel \( (x-1) \) in the numerator and denominator: \[ = \frac{x \cdot -1 \cdot (x+1)}{(x-3)(x+1)(x-3)} \] Now we can cancel \( (x+1) \): \[ = \frac{-x}{(x-3)(x-3)} \] Thus, we finalize our simplification to: \[ \frac{-x}{(x-3)^{2}}, \quad x \neq 3, -1, \text{and } 1 \] Now, the final result is: \[ \frac{-x}{(x-3)^2} \] where \( x \) cannot be \( 3 \), \( 1 \), or \(-1\).

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy