Question
Upstudy AI Solution
Tutor-Verified Answer
Answer
The simplified form of the expression is \( \frac{1}{2} \).
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\frac{4^{x}+3\times 2^{2x+1}}{7\times 2^{2x+1}}\)
- step1: Add the terms:
\(\frac{7\times 2^{2x}}{7\times 2^{2x+1}}\)
- step2: Reduce the fraction:
\(\frac{2^{2x}}{2^{2x+1}}\)
- step3: Divide the numbers:
\(\frac{1}{2^{2x+1-2x}}\)
- step4: Subtract the terms:
\(\frac{1}{2^{1}}\)
- step5: Simplify:
\(\frac{1}{2}\)
To simplify the expression \( \frac{4^{x}+3 \cdot 2^{2 x+1}}{7 \cdot 2^{2 x+1}} \), we can follow these steps:
1. **Rewrite \(4^x\)**: We know that \(4^x\) can be expressed as \((2^2)^x = 2^{2x}\). Thus, we can rewrite the expression as:
\[
\frac{2^{2x} + 3 \cdot 2^{2x + 1}}{7 \cdot 2^{2x + 1}}
\]
2. **Factor out \(2^{2x}\)** from the numerator:
\[
= \frac{2^{2x}(1 + 3 \cdot 2)}{7 \cdot 2^{2x + 1}}
\]
Here, \(3 \cdot 2 = 6\), so we have:
\[
= \frac{2^{2x}(1 + 6)}{7 \cdot 2^{2x + 1}} = \frac{2^{2x} \cdot 7}{7 \cdot 2^{2x + 1}}
\]
3. **Cancel out \(7\)** from the numerator and denominator:
\[
= \frac{2^{2x}}{2^{2x + 1}}
\]
4. **Simplify the powers of \(2\)**:
\[
= \frac{1}{2}
\]
Thus, the simplified form of the expression is:
\[
\frac{1}{2}
\]
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Extra Insights
To simplify the expression \( \frac{4^{x}+3.2^{2 x+1}}{7.2^{2 x+1}} \), let's rewrite \( 4^{x} \) as \( (2^{2})^{x} = 2^{2x} \). This gives us: \[ \frac{2^{2x} + 3 \cdot 2^{2x+1}}{7 \cdot 2^{2x+1}} = \frac{2^{2x} + 3 \cdot 2^{2x} \cdot 2}{7 \cdot 2^{2x+1}} = \frac{2^{2x}(1 + 6)}{7 \cdot 2^{2x+1}} = \frac{7 \cdot 2^{2x}}{7 \cdot 2^{2x+1}} \] Now, if we simplify this, we can cancel out \( 7 \) in the numerator and denominator: \[ \frac{2^{2x}}{2^{2x+1}} = \frac{1}{2} \] Thus, the simplified form of the given expression is \( \frac{1}{2} \).