Question
upstudy study bank question image url

\( \operatorname { Lim } _ { x \rightarrow \infty } \frac { \sqrt[ 3 ] { 8 \sqrt { x ^ { 5 } + 2 x } + 4 x } + 3 \sqrt[ 3 ] { x ^ { 2 } } \sqrt[ 6 ] { x } } { \sqrt { 2 + \sqrt { 3 + x \sqrt { x ^ { 3 } } } } } \)

Ask by French Curry. in Venezuela
Feb 05,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

El límite tiende a infinito. **Explicación Simplificada:** Al simplificar la expresión, vemos que el numerador crece más rápido que el denominador cuando \( x \) se hace muy grande. Por lo tanto, el límite es infinito. \[ \lim_{x \to \infty} \frac{ \sqrt[3]{8 \sqrt{x^5 + 2x} + 4x} + 3 \sqrt[3]{x^2} \sqrt[6]{x} }{ \sqrt{2 + \sqrt{3 + x \sqrt{x^3}}} } = \infty \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Mind Expander

To solve the limit \( \operatorname{Lim}_{x \rightarrow \infty} \frac{\sqrt[3]{8\sqrt{x^5 + 2x} + 4x} + 3\sqrt[3]{x^2}\sqrt[6]{x}}{\sqrt{2 + \sqrt{3 + x\sqrt{x^3}}}} \), we'll analyze the behaviors of the numerator and denominator as \( x \) approaches infinity. First, for the **numerator**: 1. Inside the cube root, as \( x \rightarrow \infty \), \( x^5 \) dominates \( 2x \): \[ \sqrt{x^5 + 2x} \sim \sqrt{x^5} = x^{5/2} \] Thus, \[ 8\sqrt{x^5 + 2x} + 4x \sim 8x^{5/2} \] Therefore, \[ \sqrt[3]{8\sqrt{x^5 + 2x} + 4x} \sim \sqrt[3]{8x^{5/2}} = 2x^{5/6} \] 2. For \( 3\sqrt[3]{x^2}\sqrt[6]{x} \): \[ \sqrt[3]{x^2}\sqrt[6]{x} = x^{2/3 + 1/6} = x^{4/6 + 1/6} = x^{5/6} \] So, \[ 3\sqrt[3]{x^2}\sqrt[6]{x} = 3x^{5/6} \] Combining these, we get the numerator: \[ \sqrt[3]{8\sqrt{x^5 + 2x} + 4x} + 3\sqrt[3]{x^2}\sqrt[6]{x} \sim 2x^{5/6} + 3x^{5/6} = 5x^{5/6} \] Next, consider the **denominator**: 1. Inside the square root, \[ x\sqrt{x^3} = x^{1/2}x^{3/2} = x^2 \] Thus, \( 3 + x\sqrt{x^3} \sim 3 + x^2 \) as \( x \) becomes very large. This means the term approximates: \[ \sqrt{2 + \sqrt{3 + x\sqrt{x^3}}} \sim \sqrt{2 + \sqrt{x^2}} = \sqrt{2 + x} \sim \sqrt{x} \text{ (for large } x\text{)} \] So the denominator becomes: \[ \sqrt{2 + \sqrt{3 + x\sqrt{x^3}}} \sim \sqrt{x} \] Putting this all together, we have: \[ \frac{5x^{5/6}}{\sqrt{x}} = \frac{5x^{5/6}}{x^{1/2}} = 5x^{5/6 - 3/6} = 5x^{2/6} = 5x^{1/3} \] As \( x \rightarrow \infty \), \( 5x^{1/3} \rightarrow \infty \). Therefore, the final result of the limit is: \[ \operatorname{Lim}_{x \rightarrow \infty} \frac{\sqrt[3]{8\sqrt{x^5 + 2x} + 4x} + 3\sqrt[3]{x^2}\sqrt[6]{x}}{\sqrt{2 + \sqrt{3 + x\sqrt{x^3}}}} = \infty \]

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy