Multiply. \[ 9 \sqrt{5}(\sqrt{15}-\sqrt{6}) \] Simplify your answer as much as possible.
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To simplify the expression \( 9 \sqrt{5}(\sqrt{15}-\sqrt{6}) \), we will distribute \( 9 \sqrt{5} \) across both terms inside the parentheses. Starting with the first term: \[ 9 \sqrt{5} \cdot \sqrt{15} = 9 \cdot \sqrt{5 \cdot 15} = 9 \cdot \sqrt{75} \] Next, we simplify \( \sqrt{75} \): \[ \sqrt{75} = \sqrt{25 \cdot 3} = \sqrt{25} \cdot \sqrt{3} = 5\sqrt{3} \] So, we have: \[ 9 \sqrt{5} \cdot \sqrt{15} = 9 \cdot 5 \sqrt{3} = 45 \sqrt{3} \] Now for the second term: \[ 9 \sqrt{5} \cdot \sqrt{6} = 9 \cdot \sqrt{5 \cdot 6} = 9 \cdot \sqrt{30} \] Putting it all together, we combine the two parts: \[ 9 \sqrt{5}(\sqrt{15} - \sqrt{6}) = 45 \sqrt{3} - 9 \sqrt{30} \] Thus, the simplified expression is: \[ \boxed{45 \sqrt{3} - 9 \sqrt{30}} \]