Answer
### Problem 8
**Part a**
Express \( f(\theta) = \sqrt{2} \cos \theta + \sqrt{2} \sin \theta \) as \( A \sin(\varphi + \theta) \):
\[
f(\theta) = 2 \sin\left(\frac{\pi}{4} + \theta\right)
\]
**Part b**
(i) Maximum value of \( f(\theta) \) is 2, occurring at \( \theta = \frac{\pi}{6} - \frac{\pi}{12} + 2k\pi \) and \( \theta = \frac{7\pi}{12} + 2k\pi \).
(ii) Solutions to \( f(\theta) = 1 \):
\[
\theta = -\frac{\pi}{12} + 2k\pi \quad \text{and} \quad \theta = \frac{7\pi}{12} + 2k\pi
\]
### Problem 9
Solutions to \( \cos \theta + \cos\left(\frac{\theta}{2}\right) + 1 = 0 \):
\[
\theta = 180^\circ + k \cdot 360^\circ, \quad \theta = 120^\circ + k \cdot 360^\circ, \quad \theta = 240^\circ + k \cdot 360^\circ
\]
### Problem 11
#### Part a
Solutions to \( \sqrt{1 + \sin \theta} = \cos \theta \):
\[
\theta = 0^\circ, \quad \theta = 180^\circ, \quad \theta = 270^\circ
\]
#### Part b
Solutions to \( \frac{\sqrt{1 + \cos \theta}}{2} = \cos \theta \):
\[
\cos \theta = \frac{1 \pm \sqrt{1 + 16}}{8} = \frac{1 \pm \sqrt{17}}{8}
\]
Thus, \( \theta \) values can be found using inverse cosine.
#### Part c
Solutions to \( \sin \theta = \sqrt{2 - \sin \theta} \):
\[
\sin \theta = \sqrt{2 - \sin \theta}
\]
Squaring both sides:
\[
\sin^2 \theta = 2 - \sin \theta
\]
Rearranging:
\[
\sin^2 \theta + \sin \theta - 2 = 0
\]
Solving the quadratic equation:
\[
\sin \theta = \frac{-1 \pm \sqrt{1 + 8}}{2} = \frac{-1 \pm 3}{2}
\]
Thus, \( \sin \theta = 1 \) or \( \sin \theta = -2 \) (invalid since \( \sin \theta \) ranges between -1 and 1). Therefore, the only valid solution is \( \theta = 90^\circ \).
Solution
Let's solve the problems step by step.
### Problem 8
Given the function:
\[
f(\theta) = \sqrt{2} \cos \theta + \sqrt{2} \sin \theta
\]
#### Part a
We want to express \( f(\theta) \) in the form:
\[
f(\theta) = A \sin(\varphi + \theta)
\]
To do this, we can use the sine addition formula:
\[
\sin(\varphi + \theta) = \sin \varphi \cos \theta + \cos \varphi \sin \theta
\]
We can match coefficients:
- \( A \sin \varphi = \sqrt{2} \)
- \( A \cos \varphi = \sqrt{2} \)
To find \( A \), we can use the Pythagorean identity:
\[
A = \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2} = \sqrt{2 + 2} = \sqrt{4} = 2
\]
Now, we can find \( \varphi \):
\[
\sin \varphi = \frac{\sqrt{2}}{2}, \quad \cos \varphi = \frac{\sqrt{2}}{2}
\]
This gives us \( \varphi = 45^\circ \) or \( \varphi = \frac{\pi}{4} \).
Thus, we can write:
\[
f(\theta) = 2 \sin\left(\frac{\pi}{4} + \theta\right)
\]
#### Part b
(i) The maximum value of \( f(\theta) \) occurs when \( \sin\left(\frac{\pi}{4} + \theta\right) = 1 \):
\[
2 \cdot 1 = 2
\]
To find the values of \( \theta \):
\[
\frac{\pi}{4} + \theta = \frac{\pi}{2} + 2k\pi \quad \Rightarrow \quad \theta = \frac{\pi}{4} + 2k\pi
\]
\[
\frac{\pi}{4} + \theta = \frac{3\pi}{2} + 2k\pi \quad \Rightarrow \quad \theta = \frac{5\pi}{4} + 2k\pi
\]
(ii) To solve \( f(\theta) = 1 \):
\[
2 \sin\left(\frac{\pi}{4} + \theta\right) = 1 \quad \Rightarrow \quad \sin\left(\frac{\pi}{4} + \theta\right) = \frac{1}{2}
\]
The solutions are:
\[
\frac{\pi}{4} + \theta = \frac{\pi}{6} + 2k\pi \quad \Rightarrow \quad \theta = \frac{\pi}{6} - \frac{\pi}{4} + 2k\pi = -\frac{\pi}{12} + 2k\pi
\]
\[
\frac{\pi}{4} + \theta = \frac{5\pi}{6} + 2k\pi \quad \Rightarrow \quad \theta = \frac{5\pi}{6} - \frac{\pi}{4} + 2k\pi = \frac{7\pi}{12} + 2k\pi
\]
### Problem 9
Solve:
\[
\cos \theta + \cos\left(\frac{\theta}{2}\right) + 1 = 0
\]
Rearranging gives:
\[
\cos \theta + 1 = -\cos\left(\frac{\theta}{2}\right)
\]
Using the identity \( \cos \theta = 2\cos^2\left(\frac{\theta}{2}\right) - 1 \):
\[
2\cos^2\left(\frac{\theta}{2}\right) - 1 + 1 = -\cos\left(\frac{\theta}{2}\right)
\]
This simplifies to:
\[
2\cos^2\left(\frac{\theta}{2}\right) = -\cos\left(\frac{\theta}{2}\right)
\]
Factoring gives:
\[
\cos\left(\frac{\theta}{2}\right)(2\cos\left(\frac{\theta}{2}\right) + 1) = 0
\]
Thus, we have:
1. \( \cos\left(\frac{\theta}{2}\right) = 0 \) leads to \( \frac{\theta}{2} = 90^\circ + k \cdot 180^\circ \) or \( \theta = 180^\circ + k \cdot 360^\circ \)
2. \( 2\cos\left(\frac{\theta}{2}\right) + 1 = 0 \) leads to \( \cos\left(\frac{\theta}{2}\right) = -\frac{1}{2} \) or \( \frac{\theta}{2} = 120^\circ + k \cdot 360^\circ \) or \( \frac{\theta}{2} = 240^\circ + k \cdot 360^\circ \)
### Problem 11
#### Part a
Solve:
\[
\sqrt{1 + \sin \theta} = \cos \theta
\]
Squaring both sides:
\[
1 + \sin \theta = \cos^2 \theta
\]
Using \( \cos^2 \theta = 1 - \sin^2 \theta \):
\[
1 + \sin \theta = 1 - \sin^2 \theta
\]
Rearranging gives:
\[
\sin^2 \theta + \sin \theta = 0
\]
Factoring:
\[
\sin \theta(\sin \theta + 1) = 0
\]
Thus, \( \sin \theta = 0 \) or \( \sin \theta = -1 \):
- \( \theta = 0^\circ, 180^\circ \)
- \( \theta = 270^\circ \)
#### Part b
Solve:
\[
\frac{\sqrt{1 + \cos \theta}}{2} = \cos \theta
\]
Squaring both sides:
\[
\frac{1 + \cos \theta}{4} = \cos^2 \theta
\]
Rearranging gives:
\[
1 + \cos \theta = 4\cos^2 \theta
\]
This leads to:
\[
4\cos^2 \theta - \cos \theta - 1 = 0
\]
Using the quadratic formula:
\[
\cos \theta = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 4 \cdot (-1)}}{2 \cdot 4} = \frac{1 \pm
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution