Question
upstudy study bank question image url

Chapter 6: Trigonometric Identities LO3 AS11.3.5 8. \( f(\theta)=\sqrt{2} \cos \theta+\sqrt{2} \sin \theta \) a) Write \( f(\theta) \) in the form: \( f(\theta)=A \sin (\varphi+\theta) \). b) (i) Hence find the maximum value of \( f(\theta) \) and the values of \( \theta \) at which it occurs. (ii) Solve \( f(\theta)=1 \). 9. Solve: \( \cos \theta+\cos \left(\frac{\theta}{2}\right)+1=0, \theta \in\left(-90^{\circ} ; 90^{\circ}\right) \). 111). Solve: \( 5 \cos ^{2}\left(\frac{\theta}{2}\right)+\sin \theta=3 \sin ^{2}\left(\frac{\theta}{2}\right)+2, \theta \in\left(-360^{\circ} ; 360^{\circ}\right) \). 11. Solve the following equations: a) \( \sqrt{1+\sin \theta}=\cos \theta, \theta \in\left(0^{\circ} ; 360^{\circ}\right) \) b) \( \frac{\sqrt{1+\cos \theta}}{2}=\cos \theta, \theta \in\left(-360^{\circ} ; 0^{\circ}\right) \) (c) \( \sin \theta=\sqrt{2-\sin \theta}, \theta \in\left(-90^{\circ} ; 180^{\circ}\right] \)

Ask by Mejia Simpson. in South Africa
Mar 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

### Problem 8 **Part a** Express \( f(\theta) = \sqrt{2} \cos \theta + \sqrt{2} \sin \theta \) as \( A \sin(\varphi + \theta) \): \[ f(\theta) = 2 \sin\left(\frac{\pi}{4} + \theta\right) \] **Part b** (i) Maximum value of \( f(\theta) \) is 2, occurring at \( \theta = \frac{\pi}{6} - \frac{\pi}{12} + 2k\pi \) and \( \theta = \frac{7\pi}{12} + 2k\pi \). (ii) Solutions to \( f(\theta) = 1 \): \[ \theta = -\frac{\pi}{12} + 2k\pi \quad \text{and} \quad \theta = \frac{7\pi}{12} + 2k\pi \] ### Problem 9 Solutions to \( \cos \theta + \cos\left(\frac{\theta}{2}\right) + 1 = 0 \): \[ \theta = 180^\circ + k \cdot 360^\circ, \quad \theta = 120^\circ + k \cdot 360^\circ, \quad \theta = 240^\circ + k \cdot 360^\circ \] ### Problem 11 #### Part a Solutions to \( \sqrt{1 + \sin \theta} = \cos \theta \): \[ \theta = 0^\circ, \quad \theta = 180^\circ, \quad \theta = 270^\circ \] #### Part b Solutions to \( \frac{\sqrt{1 + \cos \theta}}{2} = \cos \theta \): \[ \cos \theta = \frac{1 \pm \sqrt{1 + 16}}{8} = \frac{1 \pm \sqrt{17}}{8} \] Thus, \( \theta \) values can be found using inverse cosine. #### Part c Solutions to \( \sin \theta = \sqrt{2 - \sin \theta} \): \[ \sin \theta = \sqrt{2 - \sin \theta} \] Squaring both sides: \[ \sin^2 \theta = 2 - \sin \theta \] Rearranging: \[ \sin^2 \theta + \sin \theta - 2 = 0 \] Solving the quadratic equation: \[ \sin \theta = \frac{-1 \pm \sqrt{1 + 8}}{2} = \frac{-1 \pm 3}{2} \] Thus, \( \sin \theta = 1 \) or \( \sin \theta = -2 \) (invalid since \( \sin \theta \) ranges between -1 and 1). Therefore, the only valid solution is \( \theta = 90^\circ \).

Solution

Let's solve the problems step by step. ### Problem 8 Given the function: \[ f(\theta) = \sqrt{2} \cos \theta + \sqrt{2} \sin \theta \] #### Part a We want to express \( f(\theta) \) in the form: \[ f(\theta) = A \sin(\varphi + \theta) \] To do this, we can use the sine addition formula: \[ \sin(\varphi + \theta) = \sin \varphi \cos \theta + \cos \varphi \sin \theta \] We can match coefficients: - \( A \sin \varphi = \sqrt{2} \) - \( A \cos \varphi = \sqrt{2} \) To find \( A \), we can use the Pythagorean identity: \[ A = \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2} = \sqrt{2 + 2} = \sqrt{4} = 2 \] Now, we can find \( \varphi \): \[ \sin \varphi = \frac{\sqrt{2}}{2}, \quad \cos \varphi = \frac{\sqrt{2}}{2} \] This gives us \( \varphi = 45^\circ \) or \( \varphi = \frac{\pi}{4} \). Thus, we can write: \[ f(\theta) = 2 \sin\left(\frac{\pi}{4} + \theta\right) \] #### Part b (i) The maximum value of \( f(\theta) \) occurs when \( \sin\left(\frac{\pi}{4} + \theta\right) = 1 \): \[ 2 \cdot 1 = 2 \] To find the values of \( \theta \): \[ \frac{\pi}{4} + \theta = \frac{\pi}{2} + 2k\pi \quad \Rightarrow \quad \theta = \frac{\pi}{4} + 2k\pi \] \[ \frac{\pi}{4} + \theta = \frac{3\pi}{2} + 2k\pi \quad \Rightarrow \quad \theta = \frac{5\pi}{4} + 2k\pi \] (ii) To solve \( f(\theta) = 1 \): \[ 2 \sin\left(\frac{\pi}{4} + \theta\right) = 1 \quad \Rightarrow \quad \sin\left(\frac{\pi}{4} + \theta\right) = \frac{1}{2} \] The solutions are: \[ \frac{\pi}{4} + \theta = \frac{\pi}{6} + 2k\pi \quad \Rightarrow \quad \theta = \frac{\pi}{6} - \frac{\pi}{4} + 2k\pi = -\frac{\pi}{12} + 2k\pi \] \[ \frac{\pi}{4} + \theta = \frac{5\pi}{6} + 2k\pi \quad \Rightarrow \quad \theta = \frac{5\pi}{6} - \frac{\pi}{4} + 2k\pi = \frac{7\pi}{12} + 2k\pi \] ### Problem 9 Solve: \[ \cos \theta + \cos\left(\frac{\theta}{2}\right) + 1 = 0 \] Rearranging gives: \[ \cos \theta + 1 = -\cos\left(\frac{\theta}{2}\right) \] Using the identity \( \cos \theta = 2\cos^2\left(\frac{\theta}{2}\right) - 1 \): \[ 2\cos^2\left(\frac{\theta}{2}\right) - 1 + 1 = -\cos\left(\frac{\theta}{2}\right) \] This simplifies to: \[ 2\cos^2\left(\frac{\theta}{2}\right) = -\cos\left(\frac{\theta}{2}\right) \] Factoring gives: \[ \cos\left(\frac{\theta}{2}\right)(2\cos\left(\frac{\theta}{2}\right) + 1) = 0 \] Thus, we have: 1. \( \cos\left(\frac{\theta}{2}\right) = 0 \) leads to \( \frac{\theta}{2} = 90^\circ + k \cdot 180^\circ \) or \( \theta = 180^\circ + k \cdot 360^\circ \) 2. \( 2\cos\left(\frac{\theta}{2}\right) + 1 = 0 \) leads to \( \cos\left(\frac{\theta}{2}\right) = -\frac{1}{2} \) or \( \frac{\theta}{2} = 120^\circ + k \cdot 360^\circ \) or \( \frac{\theta}{2} = 240^\circ + k \cdot 360^\circ \) ### Problem 11 #### Part a Solve: \[ \sqrt{1 + \sin \theta} = \cos \theta \] Squaring both sides: \[ 1 + \sin \theta = \cos^2 \theta \] Using \( \cos^2 \theta = 1 - \sin^2 \theta \): \[ 1 + \sin \theta = 1 - \sin^2 \theta \] Rearranging gives: \[ \sin^2 \theta + \sin \theta = 0 \] Factoring: \[ \sin \theta(\sin \theta + 1) = 0 \] Thus, \( \sin \theta = 0 \) or \( \sin \theta = -1 \): - \( \theta = 0^\circ, 180^\circ \) - \( \theta = 270^\circ \) #### Part b Solve: \[ \frac{\sqrt{1 + \cos \theta}}{2} = \cos \theta \] Squaring both sides: \[ \frac{1 + \cos \theta}{4} = \cos^2 \theta \] Rearranging gives: \[ 1 + \cos \theta = 4\cos^2 \theta \] This leads to: \[ 4\cos^2 \theta - \cos \theta - 1 = 0 \] Using the quadratic formula: \[ \cos \theta = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 4 \cdot (-1)}}{2 \cdot 4} = \frac{1 \pm

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Let’s dive into \( f(\theta) \) for a moment! To rewrite \( f(\theta) = \sqrt{2} \cos \theta + \sqrt{2} \sin \theta \) in the form \( A \sin (\varphi + \theta) \), we can use the sine addition formula. Notably, \( A = 2 \) and \( \varphi = 45^\circ \) (since \(\sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}\)). So, we get \( f(\theta) = 2 \sin\left(\theta + 45^\circ\right) \)! Now onto the maximum value! The maximum value of \( f(\theta) \) is 2 when \( \theta + 45^\circ = 90^\circ \) or \( \theta = 45^\circ \). As for solving \( f(\theta) = 1 \), we can set \( 2 \sin(\theta + 45^\circ) = 1 \) leading to \( \sin(\theta + 45^\circ) = \frac{1}{2} \). This gives us two angles: \( \theta + 45^\circ = 30^\circ \) or \( \theta + 45^\circ = 150^\circ \), which leads to solutions like \( \theta = -15^\circ \) and \( \theta = 105^\circ \). As for that puzzling \( \cos \theta + \cos(\frac{\theta}{2}) + 1 = 0 \), we can use properties of cosine to pinpoint roots within the range provided! Don’t forget about your algebra during these explorations: clearly distinguishing between different parts of the equations often helps in spotting the solution, while ensuring all transformations respect periodicity and defined domains will save you time and headaches!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy