Question
upstudy study bank question image url

14 Use \( \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \) to prove that. 1) \( \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \) iii) \( \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \) iii) \( \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \) I. 5 Use the above to prove that i) \( \sin 2 \beta=2 \sin \beta \cos \beta \) ii) \( \cos 2 \beta=1-2 \sin ^{2} \beta \) 1.6 Evaluat \( \sin 75^{\circ} \cos 75^{\circ} \) Without using a calculator.

Ask by Mcdonald Stephens. in South Africa
Mar 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. **Prove:** - \( \cos(\alpha+\beta) = \cos\alpha\,\cos\beta - \sin\alpha\,\sin\beta \) - \( \sin(\alpha+\beta) = \sin\alpha\,\cos\beta + \cos\alpha\,\sin\beta \) - \( \sin(\alpha-\beta) = \sin\alpha\,\cos\beta - \cos\alpha\,\sin\beta \) 2. **Prove the Double-Angle Formulas:** - \( \sin2\beta = 2\sin\beta\,\cos\beta \) - \( \cos2\beta = 1 - 2\sin^2\beta \) 3. **Evaluate:** - \( \sin75^\circ \cos75^\circ = \frac{1}{4} \)

Solution

**1. Prove: \( \cos(\alpha+\beta)=\cos\alpha\,\cos\beta-\sin\alpha\,\sin\beta \)** Starting with \[ \cos(\alpha-\beta)=\cos\alpha\,\cos\beta+\sin\alpha\,\sin\beta, \] replace \(\beta\) with \(-\beta\) to obtain an expression for \(\cos(\alpha+ \beta)\): \[ \cos(\alpha-(-\beta))=\cos\alpha\,\cos(-\beta)+\sin\alpha\,\sin(-\beta). \] Since \[ \cos(-\beta)=\cos\beta\quad \text{and}\quad \sin(-\beta)=-\sin\beta, \] this becomes \[ \cos(\alpha+\beta)=\cos\alpha\,\cos\beta-\sin\alpha\,\sin\beta. \] --- **2. Prove: \( \sin(\alpha+\beta)=\sin\alpha\,\cos\beta+\cos\alpha\,\sin\beta \)** Express \(\sin(\alpha+\beta)\) in terms of cosine by using the complementary angle: \[ \sin(\alpha+\beta)=\cos\Bigl(\frac{\pi}{2}-(\alpha+\beta)\Bigr). \] Rewrite the argument: \[ \frac{\pi}{2}-(\alpha+\beta)=\Bigl(\frac{\pi}{2}-\alpha\Bigr)-\beta. \] Now apply the cosine difference formula: \[ \cos\Bigl[\Bigl(\frac{\pi}{2}-\alpha\Bigr)-\beta\Bigr] =\cos\Bigl(\frac{\pi}{2}-\alpha\Bigr)\cos\beta+\sin\Bigl(\frac{\pi}{2}-\alpha\Bigr)\sin\beta. \] Recall the co-function identities: \[ \cos\Bigl(\frac{\pi}{2}-\alpha\Bigr)=\sin\alpha,\quad \sin\Bigl(\frac{\pi}{2}-\alpha\Bigr)=\cos\alpha. \] Thus, \[ \sin(\alpha+\beta)=\sin\alpha\,\cos\beta+\cos\alpha\,\sin\beta. \] --- **3. Prove: \( \sin(\alpha-\beta)=\sin\alpha\,\cos\beta-\cos\alpha\,\sin\beta \)** A similar approach can be used. Write: \[ \sin(\alpha-\beta)=\cos\Bigl(\frac{\pi}{2}-(\alpha-\beta)\Bigr) =\cos\Bigl[\Bigl(\frac{\pi}{2}-\alpha\Bigr)+\beta\Bigr]. \] Now use the cosine addition formula: \[ \cos\Bigl[\Bigl(\frac{\pi}{2}-\alpha\Bigr)+\beta\Bigr] =\cos\Bigl(\frac{\pi}{2}-\alpha\Bigr)\cos\beta-\sin\Bigl(\frac{\pi}{2}-\alpha\Bigr)\sin\beta. \] Substitute the co-function identities: \[ \cos\Bigl(\frac{\pi}{2}-\alpha\Bigr)=\sin\alpha,\quad \sin\Bigl(\frac{\pi}{2}-\alpha\Bigr)=\cos\alpha. \] Thus, \[ \sin(\alpha-\beta)=\sin\alpha\,\cos\beta-\cos\alpha\,\sin\beta. \] --- **4. Prove the Double-Angle Formulas** *(i) Prove: \( \sin2\beta=2\sin\beta\,\cos\beta \)* Use the sine addition formula with \(\alpha=\beta\): \[ \sin2\beta=\sin(\beta+\beta) =\sin\beta\,\cos\beta+\cos\beta\,\sin\beta =2\sin\beta\,\cos\beta. \] *(ii) Prove: \( \cos2\beta=1-2\sin^2\beta \)* Use the cosine addition formula with \(\alpha=\beta\): \[ \cos2\beta=\cos(\beta+\beta) =\cos\beta\,\cos\beta-\sin\beta\,\sin\beta =\cos^2\beta-\sin^2\beta. \] Recall the Pythagorean identity \(\cos^2\beta=1-\sin^2\beta\). Substitute: \[ \cos2\beta=(1-\sin^2\beta)-\sin^2\beta=1-2\sin^2\beta. \] --- **5. Evaluate: \( \sin75^\circ \cos75^\circ \) Without a Calculator** Use the double-angle formula for sine: \[ \sin75^\circ \cos75^\circ = \frac{1}{2}\sin(2\times75^\circ)=\frac{1}{2}\sin150^\circ. \] Since \[ \sin150^\circ=\sin(180^\circ-30^\circ)=\sin30^\circ=\frac{1}{2}, \] it follows that \[ \sin75^\circ \cos75^\circ = \frac{1}{2}\times\frac{1}{2}=\frac{1}{4}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To prove \( \cos(\alpha + \beta) \), realize that it’s simply \( \cos(\alpha - (-\beta)) \). Using the identity: \[ \cos(\alpha + \beta) = \cos \alpha \cos(-\beta) + \sin \alpha \sin(-\beta) \] Since \( \cos(-\beta) = \cos \beta \) and \( \sin(-\beta) = -\sin \beta \), this becomes: \[ \cos \alpha \cos \beta - \sin \alpha \sin \beta \] For \( \sin(\alpha + \beta) \), apply the identity with \( \beta \) negated: \[ \sin(\alpha + \beta) = \sin(\alpha - (-\beta)) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] Next, to prove \( \sin(\alpha - \beta) \): Use \( \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \) directly, which can be verified by substituting \( \beta \) with \(-\beta\) in the addition formula. Now, for the double angle identities, set \(\alpha = \beta\) in the derived formulas. Hence, 1. \( \sin 2\beta = \sin(\beta + \beta) = 2\sin \beta \cos \beta \) directly from the sine addition formula. 2. For \( \cos 2\beta \), substitute in the cosine addition as the angle sums to 0: \[ \cos 2\beta = \cos^2 \beta - \sin^2 \beta = 1 - 2\sin^2 \beta \] Finally, to evaluate \( \sin 75^\circ \cos 75^\circ \): Using the double angle identity, we know \( \sin(2 \cdot 75^\circ) = \sin(150^\circ) = \frac{1}{2} \). Thus, \[ \sin 75^\circ \cos 75^\circ = \frac{1}{2} \sin 150^\circ = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}. \]

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy