Dada uma funço derivevel \( f, \operatorname{seja} h(x)=x-\sin (f(x)) \), onde \( f(0)=\pi \) e \( f^{\prime}(0)=\pi-1 \). Podemos afirmar que \( h(0) \) e \( h^{\prime}(0) \) Escotha uma opfło: Oa. 0e \( \pi \) Ob. 0e \( -\pi \) Oc \( -\pi \) e 0 Od. \( \pi \) e 0
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
The Deep Dive
Para determinar \( h(0) \) e \( h^{\prime}(0) \), precisamos analisar a função \( h(x) = x - \sin(f(x)) \). Primeiro, calculamos \( h(0) \): \[ h(0) = 0 - \sin(f(0)) = 0 - \sin(\pi) = 0 - 0 = 0. \] Agora, precisamos calcular \( h^{\prime}(x) \): \[ h^{\prime}(x) = 1 - \cos(f(x)) \cdot f^{\prime}(x). \] Então, avaliamos \( h^{\prime}(0) \): \[ h^{\prime}(0) = 1 - \cos(f(0)) \cdot f^{\prime}(0) = 1 - \cos(\pi) \cdot (\pi - 1) = 1 - (-1) \cdot (\pi - 1) = 1 + \pi - 1 = \pi. \] Portanto, temos que \( h(0) = 0 \) e \( h^{\prime}(0) = \pi \). A resposta correta é: **Od. \( \pi \) e 0.**