Question
upstudy study bank question image url

Given the vectors below, find the scalar triple product \( \mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) \) \( \begin{array}{l}\mathbf{u}=[0,-5,3] \\ \mathbf{v}=[0,-9,2] \\ \mathbf{w}=[6,-3,8] \\ \mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\text { Ex: } 5\end{array} \)

Ask by Black Chavez. in the United States
Feb 22,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The scalar triple product \( \mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) \) is 102.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

The Deep Dive

To find the scalar triple product \( \mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) \), we first need to compute the cross product \( \mathbf{v} \times \mathbf{w} \). Let's calculate \( \mathbf{v} \times \mathbf{w} \): \[ \mathbf{v} = \begin{bmatrix} 0 \\ -9 \\ 2 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 6 \\ -3 \\ 8 \end{bmatrix} \] Using the determinant of a matrix to find the cross product, we get: \[ \mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -9 & 2 \\ 6 & -3 & 8 \end{vmatrix} \] Calculating this determinant, we find: \[ = \mathbf{i} \begin{vmatrix} -9 & 2 \\ -3 & 8 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 0 & 2 \\ 6 & 8 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 0 & -9 \\ 6 & -3 \end{vmatrix} \] Calculating each 2x2 determinant: 1. \(\begin{vmatrix} -9 & 2 \\ -3 & 8 \end{vmatrix} = (-9)(8) - (2)(-3) = -72 + 6 = -66\) 2. \(\begin{vmatrix} 0 & 2 \\ 6 & 8 \end{vmatrix} = (0)(8) - (2)(6) = 0 - 12 = -12\) 3. \(\begin{vmatrix} 0 & -9 \\ 6 & -3 \end{vmatrix} = (0)(-3) - (-9)(6) = 0 + 54 = 54\) Now, substituting back into the cross product: \[ \mathbf{v} \times \mathbf{w} = -66 \mathbf{i} + 12 \mathbf{j} + 54 \mathbf{k} = \begin{bmatrix} -66 \\ 12 \\ 54 \end{bmatrix} \] Next, compute \( \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \): \[ \mathbf{u} = \begin{bmatrix} 0 \\ -5 \\ 3 \end{bmatrix} \] Perform the dot product: \[ \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{bmatrix} 0 \\ -5 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} -66 \\ 12 \\ 54 \end{bmatrix} = (0)(-66) + (-5)(12) + (3)(54) \] Calculating this: \[ = 0 - 60 + 162 = 102 \] Therefore, the scalar triple product \( \mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) \) is: \[ \boxed{102} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy