Question
upstudy study bank question image url

c) \( \cos ^{2} x+\cos ^{2} x \cdot \tan ^{2} x=1 \)

Ask by Mills Schmidt. in South Africa
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The equation \(\cos^{2} x + \cos^{2} x \cdot \tan^{2} x = 1\) is always true for all \(x\) except when \(\cos x = 0\), which happens at \(x = \frac{\pi}{2} + k\pi\) for any integer \(k\).

Solution

Solve the equation by following steps: - step0: Solve for \(x\): \(\cos^{2}\left(x\right)+\cos^{2}\left(x\right)\tan^{2}\left(x\right)=1\) - step1: Find the domain: \(\cos^{2}\left(x\right)+\cos^{2}\left(x\right)\tan^{2}\left(x\right)=1,x\neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\) - step2: Multiply the terms: \(\cos^{2}\left(x\right)+\left(\cos\left(x\right)\tan\left(x\right)\right)^{2}=1\) - step3: Move the expression to the left side: \(\cos^{2}\left(x\right)+\left(\cos\left(x\right)\tan\left(x\right)\right)^{2}-1=0\) - step4: Calculate: \(\cos^{2}\left(x\right)+\cos^{2}\left(x\right)\tan^{2}\left(x\right)-1=0\) - step5: Rewrite the expression: \(\cos^{2}\left(x\right)+\cos^{2}\left(x\right)\left(\frac{\sin\left(x\right)}{\cos\left(x\right)}\right)^{2}-1=0\) - step6: Simplify: \(0=0\) - step7: The statement is true: \(x \in \mathbb{R}\) - step8: Check if the solution is in the defined range: \(x \in \mathbb{R},x\neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\) - step9: Find the intersection: \(x\neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\) To solve the equation \[ \cos^{2} x + \cos^{2} x \cdot \tan^{2} x = 1, \] we can start by using the identity for \(\tan x\): \[ \tan x = \frac{\sin x}{\cos x}. \] Thus, we can rewrite \(\tan^{2} x\) as: \[ \tan^{2} x = \frac{\sin^{2} x}{\cos^{2} x}. \] Substituting this into the equation gives: \[ \cos^{2} x + \cos^{2} x \cdot \frac{\sin^{2} x}{\cos^{2} x} = 1. \] This simplifies to: \[ \cos^{2} x + \sin^{2} x = 1. \] Using the Pythagorean identity \(\sin^{2} x + \cos^{2} x = 1\), we see that this equation is always true for all \(x\) where \(\cos x \neq 0\). The only restriction comes from the fact that \(\tan x\) is undefined when \(\cos x = 0\), which occurs at: \[ x = \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z}. \] Thus, the solution to the equation is: \[ x \neq \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z}. \] This means \(x\) can take any real value except for those specific points where \(\cos x\) is zero.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Did you know that trigonometric identities like this one have been used since ancient times? The Greeks, especially Hipparchus and Ptolemy, were pioneers in exploring the relationships between angles and triangle side lengths, leading to the development of these fundamental identities we use today! When tackling such equations, keep in mind to look out for common pitfalls, such as neglecting to simplify terms or misapplying fundamental identities. For instance, always remember that \( \tan x = \frac{\sin x}{\cos x} \) can help break down the expression. Being meticulous in your calculations can save you from confusion later on!

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy